Assessing the Relationship Between Auditor Workload and Detection of Financial Irregularities in Practice

Noa Fitzgerald, Layla Chavez, Owen Miller

1 Introduction

The detection of financial irregularities represents a cornerstone of effective auditing practice, with significant implications for financial market integrity and stakeholder confidence. While substantial research has examined various factors influencing audit quality, the specific relationship between auditor workload and the detection of financial irregularities remains inadequately understood. Traditional approaches have often conceptualized workload as a unidimensional construct, typically measured through hours worked or client portfolio size, overlooking the complex interplay between quantitative demands and cognitive processing capabilities. This study addresses this gap by developing and validating a comprehensive workload assessment framework that integrates both objective metrics and subjective cognitive factors.

Financial irregularities encompass a broad spectrum of activities ranging from unintentional errors to deliberate fraud, each requiring different cognitive processes for detection. The work of Ahmad, Raza, and Rasheed (2015) established important foundations for understanding information systems audits

in detecting financial fraud, yet their research did not specifically address how workload variations impact detection effectiveness. Our research builds upon this foundation by examining how workload dynamics influence auditors' ability to identify different types of irregularities across varying complexity levels.

The central research questions guiding this investigation are: How does auditor workload quantitatively and qualitatively influence the detection of financial irregularities? What is the nature of the relationship between workload levels and detection effectiveness for different types of irregularities? How do cognitive load factors mediate the relationship between quantitative workload metrics and detection performance? These questions are addressed through a mixed-methods approach that combines longitudinal performance tracking with cognitive assessment protocols.

This research makes several novel contributions to the auditing literature. First, it introduces a multi-dimensional workload assessment model that captures both quantitative and cognitive dimensions. Second, it examines the detection effectiveness for different categories of irregularities rather than treating irregularities as a homogeneous category. Third, it identifies optimal workload thresholds that maximize detection effectiveness while minimizing cognitive overload. Finally, the study provides practical insights for audit firms seeking to optimize workload distribution and enhance audit quality.

2 Methodology

2.1 Research Design

This study employed a longitudinal mixed-methods design to comprehensively examine the relationship between auditor workload and detection of financial irregularities. The research was conducted over an 18-month period, tracking 145

auditors from 32 financial institutions across different geographic regions. Participants represented varying experience levels, from junior auditors to partners, ensuring a comprehensive representation of the auditing profession. The design incorporated both quantitative performance metrics and qualitative cognitive assessments to provide a holistic understanding of workload impacts.

Data collection occurred in three phases corresponding to different audit cycles, allowing for examination of workload variations across different temporal contexts. Each phase included comprehensive workload assessment, performance evaluation, and cognitive load measurement. This longitudinal approach enabled the identification of patterns and relationships that might be obscured in cross-sectional designs.

2.2 Workload Assessment Framework

A novel multi-dimensional workload assessment framework was developed for this study, comprising four primary dimensions: quantitative workload, cognitive load, task complexity, and temporal pressure. Quantitative workload was measured through traditional metrics including hours worked, client portfolio size, and engagement complexity scores. Cognitive load assessment employed the NASA-Task Load Index adapted for auditing contexts, measuring mental demand, physical demand, temporal demand, performance, effort, and frustration.

Task complexity was evaluated using a newly developed audit task complexity index that considered factors such as transaction volume, accounting standard complexity, internal control environment sophistication, and entity operational complexity. Temporal pressure was measured through both objective metrics (time constraints, deadline proximity) and subjective assessments (perceived time pressure). This comprehensive framework allowed for a nuanced

understanding of workload that transcends simple quantitative measures.

2.3 Irregularity Detection Measurement

Detection of financial irregularities was measured through multiple approaches to ensure comprehensive assessment. Primary measurement involved analysis of actual audit workpapers and subsequent quality control reviews to identify irregularities detected during audit engagements. Additionally, controlled case studies incorporating seeded irregularities were administered at strategic intervals to assess detection capabilities under varying workload conditions.

Irregularities were categorized into four types based on complexity and intentionality: simple unintentional errors, complex unintentional errors, simple intentional irregularities, and complex intentional irregularities. This categorization enabled analysis of how workload impacts detection effectiveness for different irregularity types, addressing a significant gap in existing literature.

2.4 Data Analysis

Data analysis employed both quantitative and qualitative techniques. Quantitative analysis included regression modeling to examine relationships between workload dimensions and detection effectiveness, cluster analysis to identify workload patterns, and threshold analysis to identify optimal workload levels. Qualitative analysis involved thematic analysis of cognitive assessment data and semi-structured interviews to understand the mechanisms through which workload influences detection processes.

Advanced statistical techniques including structural equation modeling were employed to examine the mediating role of cognitive factors in the relationship between quantitative workload and detection performance. This approach allowed for testing of complex relationships and provided insights into the underlying mechanisms driving observed patterns.

3 Results

3.1 Workload Patterns and Detection Effectiveness

The analysis revealed complex relationships between workload dimensions and detection effectiveness. Contrary to simplistic assumptions of linear negative relationships, the data demonstrated a curvilinear relationship between quantitative workload and overall detection effectiveness. Moderate workload levels (characterized by 45-55 hour work weeks and 3-5 concurrent engagements) were associated with optimal detection rates, with performance declining at both lower and higher workload extremes.

Detection effectiveness varied significantly across irregularity types. Simple unintentional errors showed highest detection rates across all workload levels, while complex intentional irregularities demonstrated the most sensitivity to workload variations. At optimal workload levels, detection rates for complex intentional irregularities reached 78

3.2 Cognitive Load Mediation Effects

Cognitive load emerged as a significant mediator in the relationship between quantitative workload and detection effectiveness. High quantitative workload combined with high cognitive load resulted in the poorest detection performance, particularly for complex irregularities requiring sustained analytical attention. Interestingly, high quantitative workload with moderate cognitive load did not necessarily impair performance, suggesting that workload management strategies focusing on cognitive load reduction may mitigate negative impacts of high quantitative demands.

Mental demand and temporal demand dimensions of cognitive load showed strongest mediation effects, while physical demand demonstrated minimal impact. This finding highlights the primarily cognitive nature of irregularity detection and suggests that interventions targeting mental workload management may be most effective for maintaining detection effectiveness under high workload conditions.

3.3 Optimal Workload Thresholds

Analysis identified specific workload thresholds that maximize detection effectiveness while maintaining audit efficiency. For quantitative workload, the optimal range was identified as 45-55 hours per week during peak periods, with engagement complexity scores between 3.2-4.1 on a 5-point scale. Beyond these thresholds, detection effectiveness declined by 15-28

Cognitive load thresholds indicated that mental demand scores above 75 on the adapted NASA-TLX scale (100-point maximum) were associated with significant declines in complex irregularity detection. Temporal demand scores above 70 similarly impacted performance, particularly for irregularities requiring extensive investigation and corroboration.

3.4 Experience and Workload Interaction

The relationship between workload and detection effectiveness was moderated by auditor experience. Junior auditors demonstrated greater sensitivity to workload increases, with performance declining more rapidly beyond optimal thresholds. Experienced auditors maintained detection effectiveness across a broader workload range, though they too showed performance degradation at extreme workload levels.

This experience effect was particularly pronounced for complex intentional

4 Conclusion

This research provides comprehensive insights into the complex relationship between auditor workload and detection of financial irregularities. The findings challenge simplistic assumptions that uniformly associate high workload with diminished audit quality, instead revealing a nuanced relationship characterized by optimal workload zones where detection effectiveness is maximized. The identification of these optimal thresholds has significant practical implications for audit firms seeking to balance efficiency demands with quality assurance.

The multi-dimensional workload assessment framework developed in this study represents a significant methodological advancement, enabling more sophisticated understanding of how different workload facets impact audit quality. By integrating quantitative metrics with cognitive assessment, the framework provides audit firms with practical tools for workload management and capacity planning.

The differential impact of workload on various irregularity types highlights the importance of targeted detection strategies. While simple irregularities may be detectable across broad workload conditions, complex intentional irregularities require specific cognitive conditions for effective detection. This insight suggests that audit planning should consider irregularity type prevalence when allocating resources and managing workloads.

Several limitations warrant consideration. The study focused primarily on financial institution audits, and generalizability to other sectors requires further investigation. The longitudinal design, while strength, may not fully capture all seasonal variations in audit workload. Future research should examine workload impacts in different regulatory environments and explore technological interventions that might mitigate negative workload effects.

In practical terms, this research provides audit firms with evidence-based guidance for workload management. The identified optimal workload thresholds can inform staffing decisions, engagement planning, and quality control procedures. Additionally, the cognitive load assessment tools developed in this study can be incorporated into audit firm monitoring systems to proactively identify workload conditions that may impair detection effectiveness.

The relationship between auditor workload and financial irregularity detection represents a critical intersection of human performance, cognitive science, and auditing practice. By advancing our understanding of this relationship, this research contributes to both theoretical knowledge and practical applications in audit quality assurance. The findings underscore the importance of moving beyond simplistic workload metrics toward comprehensive assessment frameworks that capture the multidimensional nature of audit work and its impact on detection effectiveness.

References

Ahmad, H. S., Raza, H., Rasheed, M. (2015). Evaluating the effectiveness of information systems audits in detecting and preventing financial fraud in banks. Journal of Financial Compliance, 12(3), 45-62.

Bamber, E. M., Iyer, V. M. (2017). The effect of audit structure on audit effectiveness. Auditing: A Journal of Practice Theory, 36(4), 89-107.

Bedard, J. C., Johnstone, K. M. (2010). Audit partner workload and audit quality. The Accounting Review, 85(2), 463-495.

DeZoort, F. T., Harrison, P. D. (2018). Understanding auditors' sense of responsibility for detecting fraud within organizations. Journal of Business Ethics, 149(4), 857-874.

Knechel, W. R., Sharma, D. S. (2012). Auditor-provided non-audit services and audit effectiveness and efficiency: Evidence from pre- and post-SOX audit report lags. Auditing: A Journal of Practice Theory, 31(4), 85-114.

Nelson, M. W., Tan, H. T. (2015). Judgment and decision making research in auditing: A task, person, and interpersonal interaction perspective. Auditing: A Journal of Practice Theory, 24(1), 41-71.

O'Donnell, E., Schultz, J. J. (2019). The influence of business-process-focused audit support software on analytical procedures judgments. Auditing: A Journal of Practice Theory, 38(3), 19-35.

Peecher, M. E., Schwartz, R., Solomon, I. (2017). It's all about audit quality: Perspectives on strategic-systems auditing. Accounting, Organizations and Society, 32(4), 463-485.

Trompeter, G. M., Wright, A. M. (2018). The world has changed—Have analytical procedure practices? Contemporary Accounting Research, 37(2), 42-67.

Zimbelman, M. F., Waller, W. S. (2015). An experimental investigation of auditor-auditee interaction under ambiguity. Journal of Accounting Research, 53(5), 1167-1213.