Exploring the Relationship Between Nurse Empathy and Patient Satisfaction in Acute Care Settings

Kayden Pierce, Luna Matthews, Daisy Grant

Abstract

This research investigates the complex relationship between nurse empathy and patient satisfaction in acute care environments through a novel computational empathy assessment framework. Traditional studies in healthcare have relied on self-report measures and patient surveys, which are subject to recall bias and social desirability effects. Our study introduces an innovative multimodal approach that combines natural language processing of nurse-patient interactions, facial expression analysis, and physiological synchrony measurements to quantify empathy in real-time clinical settings. We developed the Computational Empathy Assessment Tool (CEAT), which captures both verbal and non-verbal empathy indicators during clinical encounters. The research was conducted across three acute care units in urban hospitals, involving 45 nurses and 210 patient encounters. Our findings reveal that empathy manifests in distinct patterns across different phases of clinical interactions, with the highest correlation to patient satisfaction occurring during information delivery and procedural explanations rather than during initial assessments. Surprisingly, we discovered that excessive verbal empathy expressions during critical decision-making moments correlated negatively with patient confidence in care. The study also identified specific linguistic markers and paralinguistic features that predict patient satisfaction with 87

1 Introduction

The relationship between healthcare provider empathy and patient outcomes represents a critical area of investigation in contemporary healthcare research. While the importance of empathy in therapeutic relationships is widely acknowledged, the precise mechanisms through which nurse empathy influences patient satisfaction in acute care settings remain inadequately understood. Traditional approaches to studying this relationship have relied heavily on self-report measures, retrospective surveys, and observational coding systems that capture only limited aspects of the empathy construct. These methods often fail to account

for the dynamic, multimodal nature of empathy as it unfolds in real clinical interactions. The current study addresses these limitations by introducing an innovative computational framework that captures empathy through multiple channels simultaneously, providing a more comprehensive understanding of how empathy operates in acute care environments.

Acute care settings present unique challenges for empathy expression and perception. The fast-paced nature of these environments, combined with high patient acuity and time constraints, creates conditions where empathy must be expressed efficiently and effectively. Previous research has established correlations between general measures of healthcare provider empathy and patient satisfaction, but these studies have typically treated empathy as a uni-dimensional construct. Our research challenges this oversimplification by examining empathy as a multidimensional phenomenon that varies across different phases of clinical interactions and manifests through distinct verbal and non-verbal channels.

This study was guided by three primary research questions that have not been adequately addressed in existing literature. First, how does empathy manifest differently across various phases of nurse-patient interactions in acute care settings? Second, which specific aspects of empathy expression most strongly correlate with patient satisfaction measures? Third, can computational methods reliably identify empathy patterns that predict patient satisfaction outcomes? By addressing these questions through a novel methodological approach, this research contributes to both theoretical understanding of clinical empathy and practical applications for healthcare communication training.

The significance of this research extends beyond academic interest to direct clinical applications. Understanding the precise mechanisms through which empathy influences patient satisfaction can inform the development of targeted training programs, improve patient-centered care, and potentially enhance clinical outcomes. Furthermore, the computational methods developed in this study offer a scalable approach to empathy assessment that could be implemented across diverse healthcare settings.

2 Methodology

2.1 Research Design and Participant Recruitment

This study employed a mixed-methods observational design combining quantitative measures of empathy expression with qualitative assessments of patient satisfaction. The research was conducted across three acute care units in urban teaching hospitals, selected to represent diverse patient populations and clinical specialties. Participant recruitment followed a stratified sampling approach to ensure representation across different nursing experience levels, shift patterns, and clinical specialties. A total of 45 registered nurses participated in the study, with experience ranging from 6 months to 28 years (M=7.3 years, SD=6.1). Patient participants included 210 adults receiving care in these units, with diverse medical conditions including cardiovascular, respiratory, gastrointestinal, and neurological disorders.

Ethical approval was obtained from the institutional review boards of all participating hospitals, and informed consent was obtained from both nurse and patient participants. The study protocol included comprehensive measures to protect participant privacy while allowing for detailed analysis of clinical interactions. All data collection procedures were designed to minimize disruption to clinical care while capturing authentic nurse-patient interactions.

2.2 Computational Empathy Assessment Tool (CEAT) Development

The core innovation of this research lies in the development and implementation of the Computational Empathy Assessment Tool (CEAT), a multimodal framework for empathy assessment. The CEAT integrates three primary data streams: audio recordings of verbal interactions, video recordings of facial expressions and body language, and physiological measurements from both nurses and patients. Audio recordings were processed using advanced natural language processing algorithms specifically trained on healthcare communication

patterns. The linguistic analysis component identified empathy markers across multiple dimensions, including emotional validation, perspective-taking statements, supportive acknowledgments, and affective tone.

Facial expression analysis was conducted using computer vision algorithms that detected micro-expressions and emotional cues based on the Facial Action Coding System. This component allowed for quantification of non-verbal empathy expressions that often occur outside conscious awareness. Physiological synchrony was measured through heart rate variability and galvanic skin response monitoring, capturing the unconscious physiological alignment that occurs during empathic engagement. The integration of these multiple data streams created a comprehensive empathy profile for each clinical interaction.

2.3 Data Collection Procedures

Data collection occurred during naturally occurring clinical interactions between nurses and patients in acute care settings. Each interaction was recorded using discreet, wall-mounted cameras and microphones that captured the entire encounter without interfering with clinical care. Physiological data were collected using wearable sensors that measured heart rate variability and electrodermal activity. Following each recorded interaction, patients completed a detailed satisfaction survey that assessed multiple dimensions of their care experience, including communication effectiveness, emotional support, and overall satisfaction.

Nurses also completed brief post-interaction assessments documenting their perception of the interaction and their intentional empathy expressions. This multi-perspective approach allowed for triangulation of data and examination of potential discrepancies between intended and perceived empathy. The data collection protocol resulted in a rich dataset of 210 complete interactions, totaling approximately 157 hours of audio-visual recording and corresponding physiological and survey data.

2.4 Data Analysis Approach

The analysis employed both supervised and unsupervised machine learning techniques to identify patterns in empathy expression and their relationship to patient satisfaction. Natural language processing algorithms were applied to transcriptions of nurse-patient dialogues to extract linguistic features associated with empathy. These features included specific word choices, sentence structures, speech rate patterns, and conversational dynamics. Computer vision algorithms analyzed video recordings to quantify facial expression dynamics, gaze patterns, and body language cues.

Time-series analysis techniques were used to examine how empathy expressions evolved throughout clinical interactions, with particular attention to transitions between different phases of care. Multilevel modeling accounted for nested data structure (interactions within nurses within units) and examined both within-nurse and between-nurse variation in empathy expression. The relationship between empathy measures and patient satisfaction was analyzed using multiple regression techniques, with control variables for patient characteristics, clinical context, and interaction duration.

3 Results

3.1 Empathy Expression Patterns Across Interaction Phases

The analysis revealed distinct patterns of empathy expression across different phases of clinical interactions. Contrary to expectations based on existing literature, the highest levels of empathy expression were not observed during initial assessment phases but rather during procedural explanations and information delivery segments. During initial assessments, nurses primarily focused on information gathering, with empathy expressions typically limited to brief validating statements. The highest concentration of both verbal and non-verbal empathy markers occurred when nurses were explaining procedures or discussing treatment plans,

suggesting that patients may particularly value empathic communication during moments of uncertainty or potential discomfort.

A particularly noteworthy finding emerged regarding the temporal dynamics of empathy expression. Nurses who demonstrated increasing empathy throughout the interaction, rather than maintaining consistent levels, received significantly higher patient satisfaction ratings (F=8.34, p_i0.001). This pattern suggests that empathy may be most impactful when it escalates in response to patient cues rather than being uniformly distributed throughout the interaction. The data also revealed significant variation in empathy expression styles across individual nurses, with some relying more heavily on verbal expressions while others emphasized non-verbal cues.

3.2 Relationship Between Empathy Dimensions and Patient Satisfaction

The relationship between specific empathy dimensions and patient satisfaction revealed several unexpected patterns. Verbal empathy expressions showed a complex relationship with satisfaction measures: while moderate levels of verbal empathy correlated positively with satisfaction (r=0.42, p_i0.01), excessive verbal empathy during critical decision-making moments was associated with decreased patient confidence in care (r=-0.31, p_i0.05). This finding challenges the assumption that more empathy expression is always better and suggests the importance of contextual appropriateness in empathy demonstration.

Non-verbal empathy indicators, particularly facial expression dynamics and body language alignment, showed stronger and more consistent correlations with patient satisfaction than verbal measures alone. Patients who perceived their nurses as genuinely engaged through non-verbal cues reported significantly higher satisfaction regardless of the verbal content of interactions. Physiological synchrony between nurses and patients emerged as a particularly powerful predictor of satisfaction, explaining 34

The integration of multiple empathy dimensions through machine learning algorithms

yielded a predictive model that could accurately classify patient satisfaction levels with 87

3.3 Contextual Factors Influencing Empathy-Perception Relationship

Several contextual factors moderated the relationship between empathy expression and patient satisfaction. Clinical urgency emerged as a significant moderator, with empathy expressions having stronger effects on satisfaction in non-urgent situations compared to high-urgency clinical scenarios. Patient characteristics, particularly anxiety levels and prior healthcare experiences, also influenced how empathy expressions were perceived and their impact on satisfaction.

An unexpected finding concerned the interaction between nurse experience and empathy effectiveness. While more experienced nurses generally demonstrated higher empathy skill, the relationship between experience and patient satisfaction was non-linear. Nurses with intermediate experience levels (3-7 years) received the highest satisfaction ratings, suggesting that both clinical competence and maintained empathy freshness contribute to optimal patient experiences.

4 Conclusion

This research makes several original contributions to understanding the relationship between nurse empathy and patient satisfaction in acute care settings. Methodologically, the development of the Computational Empathy Assessment Tool represents a significant advancement beyond traditional empathy measurement approaches. By capturing empathy through multiple synchronous data streams, this framework provides a more comprehensive and objective assessment of empathy as it naturally occurs in clinical practice.

The findings challenge several assumptions in existing literature regarding empathy in healthcare contexts. The discovery that empathy effectiveness varies across interaction phases suggests that empathy training should focus on strategic empathy expression rather than uniform increases in empathy behaviors. The complex relationship between verbal empathy and patient satisfaction, including the negative effects of excessive empathy in certain contexts, indicates that empathy quality and timing may be more important than quantity.

The identification of specific linguistic and paralinguistic markers that predict patient satisfaction provides concrete targets for communication skills training. Healthcare organizations can use these evidence-based indicators to develop focused training programs that enhance nurses' ability to express empathy effectively. The strong predictive power of non-verbal and physiological measures suggests that empathy assessment and training should extend beyond verbal communication to include these often-overlooked dimensions.

This study has several limitations that should be addressed in future research. The observational design, while providing ecological validity, limits causal inferences about the relationship between empathy and satisfaction. The focus on acute care settings may limit generalizability to other healthcare contexts. Future research should examine whether the patterns identified in this study extend to chronic care, mental health, and primary care settings.

Practical applications of this research include the development of real-time empathy feedback systems for clinical training, targeted communication coaching based on individual empathy expression patterns, and organizational interventions to support empathy sustainability among healthcare providers. The computational methods developed in this study could be adapted for automated empathy assessment in clinical education and quality improvement initiatives.

In conclusion, this research demonstrates that the relationship between nurse empathy and patient satisfaction is more complex and nuanced than previously recognized. By employing innovative computational methods to examine this relationship, we have identified specific patterns and mechanisms that can inform both theoretical understanding and practical interventions. The findings emphasize the importance of contextual factors, multimodal

expression, and dynamic adaptation in effective clinical empathy, providing a foundation for enhancing patient-centered care through evidence-based communication practices.

References

Adams, K. M., Wilson, T. D. (2021). Multimodal approaches to healthcare communication analysis. Journal of Medical Communication Research, 45(2), 112-129.

Chen, L., Rodriguez, M. A. (2020). Physiological synchrony in therapeutic relationships: Measurement and implications. Psychophysiology in Healthcare, 33(4), 287-301.

Davis, M. H. (2018). Empathy: A social psychological approach. Westview Press.

Grant, D., Patterson, K. (2022). Computational linguistics in healthcare communication assessment. Computational Linguistics, 48(1), 45-67.

Johnson, R. L., Simmons, B. (2019). Patient satisfaction measurement in acute care: Methodological challenges and advances. Health Services Research, 54(3), 512-528.

Matthews, L., Chen, H. (2021). Non-verbal communication in clinical settings: A systematic review. Patient Education and Counseling, 104(7), 1503-1512.

Pierce, K., Thompson, R. (2020). Machine learning applications in healthcare communication research. Journal of Health Informatics, 26(2), 88-102.

Rodgers, B. L., Cowles, K. V. (2019). The qualitative research audit trail: A complex collection of documentation. Research in Nursing Health, 42(1), 11-19.

Williams, A. M., Irurita, V. F. (2018). Therapeutic and non-therapeutic interpersonal interactions: The patient's perspective. Journal of Clinical Nursing, 13(6), 806-815.

Yu, L., Jiang, S. (2022). Temporal dynamics of empathy in clinical interactions: A computational approach. Journal of Advanced Nursing, 78(5), 1124-1135.