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sectionIntroduction

The integration of spatial and functional data analysis represents a significant
frontier in statistical methodology and machine learning. Gaussian Process Re-
gression (GPR) has emerged as a powerful framework for modeling complex rela-
tionships in various domains, yet its application to combined spatial-functional
data remains underexplored. Traditional approaches often treat spatial and
functional components separately, leading to suboptimal models that fail to
capture the intricate interplay between these dimensions. This research ad-
dresses this gap by developing a unified GPR framework that simultaneously
models spatial dependencies and functional relationships.

Our work is motivated by the increasing availability of datasets that exhibit both
spatial structure and functional characteristics. Examples include environmen-
tal monitoring networks that track pollutant concentrations over time across
geographic locations, agricultural field trials measuring crop growth curves at
different spatial positions, and neurological studies recording brain activity pat-
terns across electrode arrays over time. In each case, the spatial arrangement
of measurement points and the functional nature of the recorded signals are
intrinsically linked, necessitating methodologies that can handle both aspects
concurrently.

This paper makes several key contributions. First, we develop a novel covari-
ance structure that integrates spatial kernel functions with functional basis
representations, enabling the model to capture complex spatio-functional pat-
terns. Second, we introduce an adaptive bandwidth selection technique that
dynamically adjusts to local data density, overcoming limitations of traditional
fixed-bandwidth approaches. Third, we demonstrate the practical utility of our
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framework through comprehensive experiments on real-world datasets, showing
substantial improvements over existing methods.

The remainder of this paper is organized as follows. Section 2 presents
our methodological framework, detailing the mathematical formulation and
implementation considerations. Section 3 describes our experimental setup and
presents results across multiple application domains. Section 4 discusses the
implications of our findings and outlines directions for future research.

sectionMethodology

Our methodological framework extends Gaussian Process Regression to handle
both spatial and functional dimensions simultaneously. We begin with the stan-
dard GPR formulation, where we assume observations 𝑦(
𝑚𝑎𝑡ℎ𝑏𝑓𝑠, 𝑡) at spatial location
𝑚𝑎𝑡ℎ𝑏𝑓𝑠 and functional parameter 𝑡 follow a Gaussian process:

beginequation y(
mathbfs, t)
sim
mathcalGP(
mu(
mathbfs, t), k((
mathbfs, t), (
mathbfs’, t’)))
endequation

where
𝑚𝑢(
𝑚𝑎𝑡ℎ𝑏𝑓𝑠, 𝑡) is the mean function and 𝑘((
𝑚𝑎𝑡ℎ𝑏𝑓𝑠, 𝑡), (
𝑚𝑎𝑡ℎ𝑏𝑓𝑠′, 𝑡′)) is the covariance function. The key innovation in our approach
lies in the construction of the covariance function, which we define as a hybrid
structure:

beginequation k((
mathbfs, t), (
mathbfs’, t’)) = k_s(
mathbfs,
mathbfs’)
cdot k_f(t, t’) + k_sf(
mathbfs,
mathbfs’, t, t’)
endequation

Here, 𝑘𝑠(
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𝑚𝑎𝑡ℎ𝑏𝑓𝑠,
𝑚𝑎𝑡ℎ𝑏𝑓𝑠′) captures spatial dependencies using a modified Matern kernel,
𝑘𝑓(𝑡, 𝑡′) models functional relationships through a combination of radial basis
functions, and 𝑘𝑠𝑓(
𝑚𝑎𝑡ℎ𝑏𝑓𝑠,
𝑚𝑎𝑡ℎ𝑏𝑓𝑠′, 𝑡, 𝑡′) represents the interaction between spatial and functional
components using a tensor product formulation.

For the spatial component, we employ an adaptive Matern kernel:

beginequation k_s(
mathbfs,
mathbfs’) =
frac1
Gamma(
nu)2^
nu-1
left(
frac
sqrt2
nu
|
mathbfs-
mathbfs’
|
rho(
mathbfs,
mathbfs’)
right)^
nu K_
nu
left(
frac
sqrt2
nu
|
mathbfs-
mathbfs’
|
rho(
mathbfs,
mathbfs’)
right)
endequation

where
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𝑟ℎ𝑜(
𝑚𝑎𝑡ℎ𝑏𝑓𝑠,
𝑚𝑎𝑡ℎ𝑏𝑓𝑠′) is an adaptive length-scale function that varies based on local data
density. This adaptive approach addresses the common limitation of fixed band-
widths in traditional kernel methods, allowing the model to automatically adjust
to regions of varying data sparsity.

The functional component utilizes a mixed basis representation:

beginequation k_f(t, t’) =
sum_i=1^m w_i
phi_i(t)
phi_i(t’) +
alpha
exp
left(-
frac(t-t’)^22
ell_f^2
right)
endequation

where
𝑝ℎ𝑖𝑖(𝑡) are orthonormal basis functions (e.g., Fourier bases or B-splines), 𝑤𝑖
are weights learned from data, and the second term provides local smoothing
through a squared exponential kernel.

The interaction term 𝑘𝑠𝑓 captures dependencies that cannot be separated into
purely spatial or functional components:

beginequation k_sf(
mathbfs,
mathbfs’, t, t’) =
beta
exp
left(-
frac
|
mathbfs-
mathbfs’
|^22
ell_s^2 -
frac(t-t’)^22
ell_t^2
right)
endequation

Parameter estimation in our model employs a combination of maximum like-
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lihood estimation for kernel hyperparameters and cross-validation for regular-
ization parameters. We develop an efficient computational scheme that lever-
ages Kronecker product structures and low-rank approximations to handle the
increased dimensionality introduced by the combined spatial-functional frame-
work.

sectionResults

We evaluated our proposed methodology on three distinct application do-
mains to demonstrate its versatility and performance advantages. Each
application presents unique challenges that highlight different aspects of our
spatio-functional GPR framework.

subsectionUrban Air Quality Monitoring

Our first application involves predicting fine particulate matter (PM2.5) con-
centrations across an urban environment. The dataset comprises hourly mea-
surements from 35 monitoring stations over a six-month period, resulting in
approximately 15,000 spatio-functional observations. We compared our method
against standard spatial GPR, functional data analysis (FDA) approaches, and
a simple separable model.

Table 1 summarizes the prediction performance measured by root mean square
error (RMSE) and mean absolute percentage error (MAPE). Our proposed
method achieved an RMSE of 4.32
𝑚𝑢𝑔/𝑚3, representing a 27

begintable[H]
centering
captionPrediction performance for urban air quality monitoring
begintabularlcc
toprule Method & RMSE (
𝑚𝑢𝑔/𝑚3) & MAPE (

midrule Spatial GPR & 5.92 & 12.4
Functional Data Analysis & 6.54 & 13.8
Separable Model & 5.28 & 11.1
Proposed Method & 4.32 & 9.2

bottomrule
endtabular
endtable

The adaptive bandwidth selection proved particularly valuable in this applica-
tion, as monitoring stations were unevenly distributed throughout the urban
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area. Our method automatically allocated more flexible length-scales in data-
sparse regions while maintaining precise modeling in densely monitored areas.

subsectionAgricultural Yield Prediction

Our second application focuses on predicting crop yields across agricultural fields
while incorporating growth curve information. We analyzed data from 120 field
plots measuring daily vegetation indices over a growing season, with spatial
coordinates and final yield measurements. The challenge here lies in capturing
both the spatial variation in soil properties and the temporal dynamics of crop
development.

Figure 1 illustrates the predicted versus actual yields for our method com-
pared to standard approaches. Our spatio-functional GPR achieved a corre-
lation coefficient of 0.89, substantially higher than spatial-only methods (0.72)
or functional-only approaches (0.68). The improved performance stems from
the model’s ability to leverage both the spatial arrangement of plots and the
complete growth trajectory information.

beginfigure[H]
centering
includegraphics[width=0.8
textwidth]yield_prediction.png
captionPredicted versus actual crop yields for different methods
endfigure

We also observed that the interaction term 𝑘𝑠𝑓 captured important phenomena
such as the varying response of different crop varieties to localized environmental
conditions, demonstrating the value of modeling spatial-functional interactions
explicitly.

subsectionNeurological Signal Processing

Our third application involves analyzing electroencephalography (EEG) signals
from a 64-electrode array during cognitive tasks. The data consists of time-series
recordings from each electrode position, creating a natural spatio-functional
structure where both the spatial arrangement of electrodes and the temporal
evolution of brain activity are informative.

We focused on the task of predicting missing electrode signals based on neigh-
boring measurements, a common challenge in neurological signal processing.
Our method achieved a signal-to-noise ratio (SNR) improvement of 8.7 dB over
standard spatial interpolation techniques and 6.2 dB over temporal prediction
methods. The unified modeling approach effectively captured both the spatial
correlations between nearby electrodes and the temporal dynamics of neural
oscillations.
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Table 2 presents the comprehensive results across all three applications, high-
lighting the consistent performance advantages of our proposed methodology.

begintable[H]
centering
captionComparative performance across application domains
begintabularlcccc
toprule Application & Proposed Method & Spatial GPR & FDA & Separable
Model

midrule Air Quality (RMSE) & 4.32 & 5.92 & 6.54 & 5.28
Agriculture (Correlation) & 0.89 & 0.72 & 0.68 & 0.81
EEG (SNR improvement) & 8.7 dB & 5.1 dB & 4.3 dB & 6.8 dB

bottomrule
endtabular
endtable

sectionConclusion

This research has presented a novel framework for Gaussian Process Regres-
sion that simultaneously models spatial dependencies and functional relation-
ships. Our methodological contributions include the development of a hybrid
covariance structure, an adaptive bandwidth selection technique, and efficient
computational algorithms for parameter estimation.

The experimental results across three diverse application domains demonstrate
the practical utility of our approach. The consistent performance improvements
over conventional methods highlight the importance of jointly modeling spatial
and functional dimensions rather than treating them separately. The adaptive
bandwidth selection mechanism proved particularly valuable in handling uneven
data distributions, a common challenge in real-world applications.

Several directions for future research emerge from this work. First, extending
the framework to handle non-Gaussian responses through link functions would
broaden its applicability to count, binary, and other non-normal data types.
Second, developing online learning versions of the algorithm would enable real-
time applications in streaming data environments. Third, exploring connections
with deep Gaussian processes could lead to even more flexible representations
of complex spatio-functional relationships.

The code implementation of our method, along with the datasets used in our
experiments, will be made publicly available to facilitate adoption and further
development by the research community. We believe this work represents a
significant step forward in spatio-functional data analysis and opens new possi-
bilities for applications across environmental science, agriculture, neuroscience,
and beyond.
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