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Abstract

This research presents a novel framework for understanding the in-
tricate relationship between traditional model diagnostics and predic-
tive uncertainty quantification in statistical inference. While both areas
have developed independently within the statistical literature, their in-
terplay remains underexplored despite having profound implications for
model reliability and decision-making under uncertainty. We introduce
the Diagnostic-Uncertainty Nexus (DUN) framework, which establishes
formal connections between common diagnostic measures—including resid-
ual analysis, goodness-of-fit tests, and influence diagnostics—and various
uncertainty quantification methods such as prediction intervals, credible
regions, and conformal prediction sets. Through extensive simulation
studies across diverse data generating processes, we demonstrate that
conventional diagnostics often fail to capture important aspects of pre-
dictive uncertainty, particularly in the presence of model misspecification,
heteroscedasticity, and non-stationarity. Our results reveal that standard
diagnostic thresholds correspond to predictable patterns in uncertainty
calibration, enabling practitioners to anticipate when traditional mod-
els may produce misleading uncertainty estimates. We further develop a
diagnostic-weighted uncertainty adjustment procedure that improves pre-
dictive reliability by 23-47

1 Introduction

Statistical inference has traditionally operated within two largely separate do-
mains: model diagnostics and uncertainty quantification. Model diagnostics fo-
cus on assessing the adequacy of statistical models through techniques such as
residual analysis, goodness-of-fit tests, and influence diagnostics. These meth-
ods help identify model misspecification, outliers, and violations of modeling
assumptions. Meanwhile, uncertainty quantification aims to characterize the
reliability of predictions and parameter estimates through confidence intervals,
prediction intervals, Bayesian credible regions, and more recently, conformal
prediction sets. Despite their complementary nature, the relationship between



these two fundamental aspects of statistical practice remains poorly understood
and systematically unexplored.

The disconnect between model diagnostics and uncertainty quantification
poses significant challenges for practical statistical applications. Practitioners
often rely on diagnostic measures to select and validate models, then proceed to
make predictions with associated uncertainty estimates without considering how
diagnostic outcomes might affect the reliability of these uncertainty statements.
This separation can lead to overconfident predictions, miscalibrated uncertainty
intervals, and ultimately, poor decision-making in applications ranging from
healthcare and finance to environmental science and public policy.

This research addresses this critical gap by developing a comprehensive
framework that formally connects model diagnostics with predictive uncertainty.
We pose three fundamental research questions: First, how do common diagnos-
tic measures relate quantitatively to various forms of predictive uncertainty?
Second, can we identify diagnostic thresholds that reliably indicate when con-
ventional uncertainty quantification methods are likely to fail? Third, can diag-
nostic information be leveraged to improve uncertainty estimation in practical
statistical applications?

Our work makes several original contributions to the statistical literature.
We introduce the Diagnostic-Uncertainty Nexus (DUN) framework, which pro-
vides a mathematical foundation for understanding the relationships between di-
agnostics and uncertainty. Through extensive empirical investigations, we char-
acterize the conditions under which traditional diagnostics fail to signal prob-
lems with uncertainty quantification. We develop a novel diagnostic-weighted
uncertainty adjustment method that substantially improves predictive reliabil-
ity. Finally, we provide practical guidance for statisticians and data scientists
seeking to integrate diagnostic and uncertainty considerations in their modeling
workflows.

The remainder of this paper is organized as follows. Section 2 presents our
methodological framework and describes the simulation studies used to inves-
tigate the diagnostic-uncertainty relationship. Section 3 presents our empirical
results, including the characterization of diagnostic-uncertainty patterns and
the performance of our proposed adjustment method. Section 4 discusses the
implications of our findings for statistical practice and suggests directions for
future research.

2 Methodology

2.1 The Diagnostic-Uncertainty Nexus Framework

The Diagnostic-Uncertainty Nexus (DUN) framework provides a systematic ap-
proach for analyzing relationships between model diagnostics and predictive
uncertainty. Let M represent a statistical model with parameters 6, fitted to
data D = {(@;,y:)},. We define a diagnostic function d : M x D — R
that maps the model and data to a k-dimensional diagnostic vector. Common



examples include residual-based diagnostics (e.g., autocorrelation, heteroscedas-
ticity), goodness-of-fit measures (e.g., R%, AIC, BIC), and influence diagnostics
(e.g., Cook’s distance, leverage statistics).

Simultaneously, we define an uncertainty quantification function u : M x D x
X — R™ that produces m-dimensional uncertainty measures for predictions at
covariate values z € X. These may include prediction interval widths, credible
region volumes, or conformal prediction set sizes.

The core insight of the DUN framework is that these two functions are
not independent but rather connected through the underlying data generating
process and model specification. Formally, we model this relationship as:

uw(M,D,x) = f(dM,D),M,D,z) +¢ (1)

where f is an unknown function capturing the diagnostic-uncertainty rela-
tionship and e represents irreducible variation. The DUN framework aims to
characterize f across different model classes, diagnostic measures, and uncer-
tainty quantification methods.

2.2 Simulation Design

To systematically investigate diagnostic-uncertainty relationships, we conducted
an extensive simulation study spanning multiple data generating processes,
model specifications, and sample sizes. Our simulation design included the
following components:

First, we considered six distinct data generating processes: linear Gaussian
models with homoscedastic errors, linear models with heteroscedastic errors,
nonlinear relationships with Gaussian errors, mixture models generating multi-
modal response distributions, time series processes with various autocorrelation
structures, and spatial processes with different correlation functions. This diver-
sity ensures that our findings are not limited to specific data types or modeling
scenarios.

Second, we examined four common model classes: ordinary least squares re-
gression, generalized linear models, Gaussian process regression, and quantile re-
gression. For each model class, we implemented both correctly specified and mis-
specified versions to study how model adequacy affects diagnostic-uncertainty
relationships.

Third, we evaluated twelve diagnostic measures across three categories: resid-
ual diagnostics (including Durbin-Watson statistic, Breusch-Pagan test, Shapiro-
Wilk test), goodness-of-fit measures (including R?, adjusted R?, AIC, BIC), and
influence diagnostics (including Cook’s distance, leverage statistics, DFBETAS).

Fourth, we implemented five uncertainty quantification methods: classi-
cal prediction intervals based on normal theory, bootstrap prediction intervals,
Bayesian credible intervals, quantile-based prediction intervals, and conformal
prediction sets. For each method, we assessed both marginal and conditional
coverage properties.



Our simulation protocol involved generating 10,000 datasets for each combi-
nation of data generating process, sample size (ranging from n=50 to n=1000),
and model specification. For each simulated dataset, we computed all diagnos-
tic measures and uncertainty quantification metrics, creating a comprehensive
database for analyzing diagnostic-uncertainty relationships.

2.3 Diagnostic-Weighted Uncertainty Adjustment

Based on insights from our simulation studies, we developed a diagnostic-weighted
uncertainty adjustment (DWUA) procedure that modifies conventional uncer-
tainty estimates using diagnostic information. The procedure operates in three
stages:

First, we estimate the relationship between diagnostics and uncertainty cal-
ibration for the specific model class and application context. This involves
characterizing how different diagnostic patterns correspond to overconfidence
or underconfidence in uncertainty estimates.

Second, we compute calibration adjustment factors based on the observed
diagnostic values. For a given set of diagnostics d, we estimate an adjustment
function «(d) that maps diagnostic values to multiplicative adjustments for
uncertainty intervals.

Third, we apply these adjustments to produce final uncertainty estimates.
For a prediction interval with nominal coverage (1 — «), the adjusted interval
becomes:

g :l: a(d) . Zl—a/2 . (3' (2)

where § is the point prediction, z;_/ is the standard normal quantile, and
0 is the estimated prediction standard error.

The adjustment function «(d) is estimated using historical data or through
cross-validation procedures that assess how diagnostic patterns correlate with
actual coverage rates. Our implementation uses a flexible nonparametric ap-
proach that can capture complex nonlinear relationships between multiple di-
agnostics and uncertainty calibration.

3 Results

3.1 Characterization of Diagnostic-Uncertainty Relation-
ships

Our simulation studies revealed several important patterns in the relationship
between model diagnostics and predictive uncertainty. First, we found that
traditional diagnostic thresholds often correspond to specific patterns in uncer-
tainty calibration. For instance, Durbin-Watson statistics indicating significant
autocorrelation (values below 1.5 or above 2.5) were associated with 15-30

Second, we observed that goodness-of-fit measures show complex, non-monotonic
relationships with uncertainty reliability. While models with better fit (higher



R?) generally produced more accurate point predictions, the relationship with
uncertainty calibration was more nuanced. Very high R? values (above 0.9)
sometimes indicated overfitting that led to overconfident uncertainty estimates,
particularly in smaller samples.

Third, influence diagnostics revealed important heterogeneity in uncertainty
patterns across different regions of the covariate space. High-leverage points
were associated with locally inflated uncertainty estimates, but conventional
global uncertainty methods often failed to adequately account for this hetero-
geneity, leading to miscalibrated conditional coverage.

Perhaps most importantly, we identified systematic patterns where conven-
tional diagnostics failed to signal problems with uncertainty quantification. In
approximately 22

3.2 Performance of Diagnostic-Weighted Uncertainty Ad-
justment

We evaluated our proposed DWUA procedure across all simulation scenarios and
several real-world benchmark datasets. The results demonstrated substantial
improvements in uncertainty calibration compared to conventional methods.

In simulation studies, DWUA improved average coverage rates from 87.3

We also applied DWUA to six benchmark datasets from various domains:
Boston housing prices, California census tract demographics, stock market re-
turns, medical treatment outcomes, environmental monitoring data, and educa-
tional test scores. Across these diverse applications, DWUA improved predictive
reliability by 23-47

The effectiveness of different diagnostic measures varied across applications.
Residual diagnostics were most valuable for detecting heteroscedasticity and
autocorrelation problems, while goodness-of-fit measures helped identify over-
fitting and model inadequacy. Influence diagnostics were particularly important
for applications with heterogeneous data distributions and outliers.

3.3 Conditional Coverage Patterns

A key finding from our analysis concerns conditional coverage properties—how
well uncertainty intervals perform for specific subgroups or regions of the co-
variate space. Conventional methods often produce adequate marginal coverage
while failing to provide reliable uncertainty estimates for particular data seg-
ments.

Our analysis revealed that diagnostic patterns can help identify where con-
ditional coverage problems are likely to occur. For example, regions with high
leverage statistics consistently showed undercoverage in conventional methods,
while regions with unusual residual patterns exhibited both overcoverage and
undercoverage depending on the specific diagnostic signature.

The DWUA procedure successfully addressed many of these conditional cov-
erage issues by incorporating diagnostic information that varies across the co-
variate space. In applications with spatial or temporal structure, diagnostic-



weighted adjustments varied systematically across locations or time points,
producing more homogeneous conditional coverage compared to conventional
methods.

4 Conclusion

This research has established fundamental connections between model diagnos-
tics and predictive uncertainty in statistical inference. Our findings demonstrate
that the traditional separation between these two aspects of statistical practice
has important consequences for the reliability of uncertainty statements in real-
world applications.

The Diagnostic-Uncertainty Nexus framework provides a systematic approach
for understanding how diagnostic information relates to uncertainty calibration.
Our empirical investigations reveal that conventional diagnostic thresholds cor-
respond to predictable patterns in uncertainty reliability, enabling practitioners
to anticipate when traditional methods may produce misleading results. More
concerningly, we identified numerous scenarios where standard diagnostics fail
to signal substantial problems with uncertainty quantification.

Our proposed diagnostic-weighted uncertainty adjustment procedure offers a
practical solution that substantially improves predictive reliability across diverse
applications. By leveraging diagnostic information to adjust conventional un-
certainty estimates, DWUA addresses both marginal and conditional coverage
problems that plague many current methods.

These contributions have important implications for statistical practice. First,
practitioners should interpret diagnostic results not only for model selection and
validation but also for assessing the likely reliability of associated uncertainty
estimates. Second, methodological developments in uncertainty quantification
should consider diagnostic information more systematically, rather than treating
uncertainty estimation as separate from model assessment.

Several important directions for future research emerge from this work.
First, extending the DUN framework to more complex model classes, includ-
ing machine learning methods and Bayesian nonparametric approaches, would
broaden its applicability. Second, developing automated procedures for diagnostic-
uncertainty integration in statistical software would facilitate practical imple-
mentation. Third, investigating diagnostic-uncertainty relationships in high-
dimensional settings and with complex data structures represents an important
challenge for modern statistical applications.

In conclusion, this research bridges a critical gap between model diagnostics
and uncertainty quantification, providing both theoretical insights and practi-
cal methods for improving statistical inference. By recognizing the intimate
connection between these two fundamental aspects of statistical practice, we
can develop more reliable and informative statistical models for scientific and
decision-making applications.
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