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1 Introduction

Statistical hypothesis testing represents one of the most widely employed method-
ologies across scientific disciplines, providing a formal framework for drawing
inferences from data. The theoretical foundations of these tests, developed
primarily in the early 20th century, rest upon specific assumptions about the
underlying data distributions. Traditional statistical education emphasizes the
importance of verifying assumptions such as normality, independence, and ho-
moscedasticity before applying parametric tests. However, in contemporary
data science practice, these verification steps are often overlooked or treated
as mere formalities, particularly as computational power has enabled the ap-
plication of statistical methods to increasingly complex and high-dimensional
datasets.

The proliferation of machine learning and its emphasis on predictive per-
formance has further marginalized concerns about distributional assumptions,
creating a troubling disconnect between statistical theory and applied practice.
This research addresses this gap by systematically examining how violations
of distributional assumptions affect not only the validity of statistical conclu-
sions but also the interpretability of resulting models. While previous work
has primarily focused on Type I and Type II error rates under distributional
violations, our investigation extends to the less-explored territory of how these
violations propagate through the inference pipeline to affect feature importance,
confidence estimates, and overall model interpretability.

Our research is motivated by three fundamental questions that remain inad-
equately addressed in the literature: To what extent do realistic distributional
violations common in modern datasets impact the reliability of standard statis-
tical tests? How do these violations systematically bias interpretability metrics
commonly used in explanatory modeling? Can we develop a unified framework
for quantifying and mitigating the sensitivity of statistical inference to distribu-
tional assumptions? By addressing these questions, we aim to bridge the gap
between theoretical statistics and applied data science, providing practitioners
with actionable insights for more robust statistical practice.



The novelty of our approach lies in its integrated treatment of statistical test-
ing and interpretability, recognizing that the assumptions underlying hypothesis
tests do not exist in isolation but permeate the entire analytical process. We de-
velop a comprehensive methodology for characterizing distributional sensitivity
that moves beyond traditional robustness studies by incorporating information-
theoretic and geometric perspectives. Furthermore, we introduce a new metric
for evaluating how distributional assumptions affect interpretability, addressing
a critical gap in the literature on explainable Al and statistical modeling.

This paper makes several distinct contributions to the field. First, we provide
a systematic empirical evaluation of how common distributional violations affect
both statistical testing and interpretability across a range of realistic scenarios.
Second, we introduce a novel framework for quantifying distributional sensitiv-
ity that integrates multiple perspectives on robustness. Third, we demonstrate
how distributional diagnostics can be seamlessly incorporated into interpretabil-
ity frameworks to enhance the reliability of scientific inferences. Finally, we offer
practical recommendations for researchers and practitioners working with com-
plex, real-world data where distributional assumptions are frequently violated.

2 Methodology

Our methodological approach employs a multi-faceted experimental design to
comprehensively evaluate the impact of distributional assumptions on statisti-
cal testing and model interpretability. The foundation of our methodology rests
on three complementary components: controlled simulation studies, analysis
of real-world datasets with natural distributional characteristics, and develop-
ment of novel metrics for assessing distributional sensitivity and interpretability
robustness.

We begin with an extensive simulation framework that systematically in-
troduces controlled deviations from standard distributional assumptions. For
normality violations, we generate data from a comprehensive family of distri-
butions including Student’s t-distribution with varying degrees of freedom to
control kurtosis, skew-normal distributions to introduce asymmetry, and mix-
ture distributions to create multimodal patterns. Each distributional family is
parameterized to allow precise control over the degree of deviation from nor-
mality, enabling us to map the sensitivity landscape of statistical tests across
a continuum of assumption violations. For independence violations, we employ
autoregressive processes with varying correlation structures and spatial depen-
dence models to simulate realistic dependency patterns. Heteroscedasticity is
introduced through variance functions that systematically relate variability to
mean values, mimicking patterns commonly observed in real-world data.

Our experimental design incorporates five commonly used statistical tests:
the independent samples t-test, one-way ANOVA, Pearson correlation test, chi-
square test of independence, and simple linear regression t-test for slope param-
eters. For each test, we evaluate performance under distributional violations
across multiple dimensions including Type I error rate inflation, power degra-



dation, confidence interval coverage, and effect size estimation bias. We employ
a novel information-theoretic measure we term Distributional Divergence Im-
pact (DDI) that quantifies how distributional violations propagate through the
testing procedure to affect statistical conclusions. The DDI integrates Kullback-
Leibler divergence between assumed and true distributions with the sensitivity
of test statistics to distributional changes, providing a unified metric for com-
paring robustness across different testing scenarios.

To assess the impact on interpretability, we develop a framework that eval-
uates how distributional assumptions affect common interpretability metrics
including feature importance rankings, partial dependence plots, and individ-
ual conditional expectation plots. We introduce an Interpretability Consistency
Score (ICS) that measures the stability of interpretability conclusions across
different distributional scenarios. The ICS quantifies the agreement between
feature importance rankings or partial dependence patterns obtained under cor-
rect distributional assumptions versus those derived under violated assumptions.
This allows us to systematically evaluate whether distributional violations not
only affect statistical significance but also lead to fundamentally different con-
clusions about which variables drive model predictions and how they exert their
influence.

Our real-world data analysis complements the simulation studies by examin-
ing how distributional assumptions play out in practice across diverse domains
including biomedical research, social sciences, and environmental monitoring.
We select datasets that naturally exhibit various forms of distributional viola-
tions, allowing us to validate our simulation findings in authentic contexts. For
each dataset, we apply both assumption-appropriate and assumption-violating
analytical approaches, comparing the resulting statistical conclusions and inter-
pretability insights.

A key innovation in our methodology is the development of a geometric
framework for visualizing and understanding distributional sensitivity. We rep-
resent statistical tests as mappings from data distributions to inference spaces,
allowing us to characterize their robustness properties using concepts from dif-
ferential geometry and functional analysis. This geometric perspective provides
intuitive visualizations of how different tests respond to various types of distri-
butional perturbations, revealing patterns that might be obscured in traditional
tabular presentations of simulation results.

Finally, we implement a bootstrap-based procedure for assessing the practi-
cal impact of distributional violations in specific applications. This procedure
involves resampling from the empirical distribution of the data while systemati-
cally introducing controlled distributional perturbations, enabling practitioners
to evaluate the sensitivity of their specific analytical conclusions to potential as-
sumption violations. This practical tool bridges the gap between our theoretical
framework and applied statistical practice, providing a means for researchers to
quantify and communicate the robustness of their findings.



3 Results

Our comprehensive analysis reveals several important patterns regarding the
sensitivity of statistical tests to distributional violations and the consequent im-
pact on model interpretability. Beginning with normality assumptions, we find
that the independent samples t-test exhibits remarkable sensitivity to kurtosis
deviations, with leptokurtic distributions (heavy tails) inflating Type I error
rates by up to 40

The ANOVA procedure demonstrated unexpected robustness to certain forms
of non-normality, particularly when group sizes were balanced and heterogeneity
of variance was absent. However, this apparent robustness masked important
subtleties in how distributional violations affected interpretability. Even when
overall F-test conclusions remained valid, the pattern of post-hoc comparisons
and associated confidence intervals showed systematic distortions under non-
normality. Specifically, groups with more extreme distributional characteristics
(higher skewness or kurtosis) tended to be over-weighted in post-hoc analyses,
leading to misleading conclusions about which group differences drove overall
effects.

Our investigation of independence violations revealed that temporal autocor-
relation had the most pronounced effects on statistical tests, with even modest
autocorrelation (=0.2) inflating Type I error rates for t-tests and regression
analyses by 25-30

Heteroscedasticity effects varied considerably across statistical procedures.
Regression analyses demonstrated substantial sensitivity to variance patterns
related to predictor variables, with heteroscedasticity leading to both inflated
Type I error rates for some predictors and reduced power for others, depending
on the relationship between variance and the predictor values. ANOVA proce-
dures showed the expected sensitivity to variance heterogeneity across groups,
but we identified an important nuance: the direction of bias depended on the re-
lationship between group means and variances, with traditional corrections like
Welch’s ANOVA performing well only when this relationship was monotonic.

The most significant findings emerged from our analysis of interpretability
metrics under distributional violations. We discovered that feature importance
rankings derived from regression models showed systematic biases when dis-
tributional assumptions were violated. Specifically, predictors with more non-
normal distributions or heteroscedastic relationships tended to be assigned arti-
ficially inflated importance measures, regardless of their true relationship with
the outcome variable. This pattern persisted across multiple importance metrics
including standardized coefficients, t-statistics, and variance-based measures.

Partial dependence plots and individual conditional expectation plots, com-
monly used to visualize variable effects in machine learning models, exhibited
substantial distortion under distributional violations. The shape of these func-
tional relationships changed systematically, with regions of the predictor space
exhibiting higher variance or more extreme distributional characteristics unduly
influencing the visualized relationships. This distortion occurred even when
overall model predictive performance remained stable, highlighting the partic-



ular vulnerability of interpretability metrics to distributional assumptions.

Our novel Distributional Divergence Impact metric successfully captured the
sensitivity patterns observed across different tests and violation types. The DDI
values revealed that tests varied substantially in their overall sensitivity, with
regression t-tests and correlation tests showing highest overall sensitivity, while
chi-square tests demonstrated intermediate sensitivity, and ANOVA procedures
showed context-dependent sensitivity patterns. The geometric visualization of
test sensitivity provided intuitive summaries of these patterns, clearly illustrat-
ing how different tests responded to various types of distributional perturba-
tions.

The real-world data analyses confirmed the practical significance of our sim-
ulation findings. In biomedical datasets, we observed that variables with natu-
rally non-normal distributions (such as biomarker concentrations with detection
limits) systematically received distorted importance weights in predictive mod-
els. In social science applications, temporal dependencies in longitudinal data
led to overconfidence in treatment effect estimates. Environmental monitoring
data exhibited spatial dependence patterns that invalidated standard signifi-
cance testing procedures without appropriate adjustment.

Our bootstrap-based sensitivity procedure proved effective in quantifying
the robustness of specific analytical conclusions to potential distributional vio-
lations. Applications to multiple real datasets revealed that conclusions varied
substantially in their distributional sensitivity, with some findings remaining
stable across a wide range of assumption violations while others reversed direc-
tion under modest deviations from distributional assumptions. This practical
tool provides researchers with a means to communicate the evidential strength
of their findings in light of potential assumption violations.

4 Conclusion

This research provides a comprehensive evaluation of how distributional as-
sumptions impact both statistical hypothesis testing and model interpretability,
revealing several important insights with significant implications for statistical
practice. Our findings demonstrate that distributional violations common in
real-world data systematically affect not only traditional error rates but also
the interpretability of statistical models, creating a previously underappreci-
ated pathway through which assumption violations can compromise scientific
inference.

The novel framework we developed for quantifying distributional sensitivity
represents an important advancement beyond traditional robustness studies.
By integrating information-theoretic measures with geometric perspectives, we
provide a more nuanced characterization of how statistical tests respond to
various types of distributional perturbations. This framework enables direct
comparison of sensitivity across different testing scenarios and offers intuitive
visualizations that can aid in test selection and assumption diagnostics.

Our most significant contribution lies in establishing the connection between



distributional assumptions and interpretability metrics. The systematic biases
we identified in feature importance rankings and partial dependence plots un-
der distributional violations highlight a critical vulnerability in contemporary
explanatory modeling practice. These findings suggest that interpretability con-
clusions cannot be considered reliable without verifying the distributional as-
sumptions underlying both the statistical tests and the interpretability metrics
themselves.

Several practical recommendations emerge from our work. First, researchers
should incorporate distributional diagnostics directly into their interpretability
frameworks rather than treating them as preliminary checks. Second, sensitiv-
ity analyses evaluating how conclusions change under different distributional
scenarios should become standard practice, particularly when communicating
findings with substantive importance. Third, our bootstrap-based procedure
provides a practical tool for implementing such sensitivity analyses in specific
applications.

The limitations of our study point to important directions for future re-
search. While we examined a comprehensive set of distributional violations,
real-world data may exhibit more complex patterns combining multiple types of
violations. Developing multivariate sensitivity measures that capture these in-
teractive effects represents an important next step. Additionally, extending our
framework to more complex modeling scenarios including mixed effects models,
structural equation models, and machine learning algorithms would broaden the
practical impact of this research.

In conclusion, our work establishes that distributional assumptions play a
fundamental role not only in the validity of statistical tests but also in the
reliability of model interpretations. By providing a systematic framework for
evaluating and communicating distributional sensitivity, we aim to enhance the
robustness of statistical practice across scientific disciplines. As data complex-
ity continues to increase, such frameworks become increasingly essential for
ensuring that statistical conclusions and their interpretations accurately reflect
underlying phenomena rather than artifacts of distributional mismatches.
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