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1 Introduction

The exponential growth in data collection capabilities across scientific disciplines
has ushered in an era where high-dimensional datasets have become common-
place rather than exceptional. In fields ranging from genomics and neuroimaging
to finance and social media analytics, researchers routinely encounter situations
where the number of measured variables (p) approaches, equals, or even sub-
stantially exceeds the number of available observations (n). This dimensional
regime stands in stark contrast to the traditional statistical paradigm, which
was developed under the assumption that p remains fixed while n grows in-
definitely. The fundamental mismatch between classical statistical theory and
modern data realities has profound implications for the reliability of scientific
conclusions drawn from standard analytical approaches.

Classical statistical methods, including ordinary least squares regression,
maximum likelihood estimation, and standard hypothesis testing procedures,
were formulated during an era when data collection was expensive and variable
selection was necessarily parsimonious. These methods rest upon asymptotic
theory that assumes p remains fixed while n — , ensuring consistency of esti-
mators and validity of inference. However, in high-dimensional settings where p
grows with n or even exceeds n, these theoretical guarantees break down in ways
that are both subtle and severe. The consequences include biased parameter es-
timates, inflated Type I error rates, loss of power, and misleading confidence
intervals.

Despite increasing awareness of these challenges, a systematic understand-
ing of how dimensional scaling affects different statistical procedures remains
incomplete. Previous research has largely focused on specific methods or partic-
ular dimensional regimes, lacking a unified framework for assessing dimensional
fragility across the spectrum of classical techniques. Moreover, the interac-
tion between dimensionality and other data characteristics—such as correlation
structure, signal-to-noise ratio, and distributional properties—has received in-
sufficient attention.

This research addresses these gaps by developing a comprehensive evaluation
framework for assessing the impact of high-dimensional data on classical statis-



tical inference and estimation. We introduce three novel metrics—inference sta-
bility, estimation consistency, and predictive reliability—that collectively cap-
ture different aspects of methodological performance across dimensional regimes.
Through extensive simulation studies spanning realistic data scenarios, we quan-
tify breakdown points for common statistical procedures and identify critical
dimensional thresholds beyond which classical methods become unreliable.

Our investigation reveals that the deterioration of classical methods occurs
gradually rather than abruptly, with significant performance degradation often
manifesting well before the p = n boundary that has received the most attention
in the literature. We demonstrate that correlation among predictors acceler-
ates this deterioration, while strong signal can temporarily mask dimensional
effects. These findings have immediate practical implications for researchers
working with modern datasets and contribute to the theoretical foundation for
developing dimension-robust statistical methodologies.

2 Methodology

Our methodological approach centers on a comprehensive simulation framework
designed to systematically evaluate the performance of classical statistical meth-
ods across varying dimensional regimes. We define dimensional regime as the
ratio p/n, where p represents the number of features and n the sample size, with
regimes categorized as low-dimensional (p/n j 0.1), moderate-dimensional (0.1
p/n i 0.5), high-dimensional (0.5 p/n j 1), and ultra-high-dimensional (p/n 1).
For each regime, we examine multiple correlation structures among predictors,
effect sizes, and error distributions to capture the complexity of real-world data
scenarios.

The simulation design incorporates both fixed and random predictor ma-
trices. For fixed designs, we generate predictor matrices X with independent
columns or with specified correlation structures, including block correlation,
autoregressive patterns, and factor-based dependence. For random designs, we
sample predictors from multivariate normal distributions with varying covari-
ance structures. Response variables are generated according to linear models
with sparse and dense signal patterns, where sparsity refers to the proportion of
truly non-zero coefficients. We consider both homogeneous and heterogeneous
error variances to assess robustness to violations of standard assumptions.

We evaluate three fundamental classes of classical statistical methods: es-
timation techniques, focusing on ordinary least squares (OLS) and maximum
likelihood estimation (MLE); inference procedures, including t-tests, F-tests,
and confidence interval construction; and model selection criteria, particularly
information criteria like AIC and BIC. For each method, we assess performance
using our three proposed metrics: inference stability, measured through empir-
ical coverage rates of confidence intervals and Type I error control; estimation
consistency, quantified via mean squared error and bias relative to true parame-
ter values; and predictive reliability, evaluated through out-of-sample prediction
accuracy and calibration.



Each simulation scenario involves 10,000 replications to ensure precise esti-
mation of performance metrics. We systematically vary the dimensional ratio
p/n from 0.01 to 10, creating a fine-grained mapping of how methodological
performance evolves with increasing dimensionality. For scenarios where p ¢
n, we focus on methods that remain technically applicable, such as OLS with
generalized inverses, while acknowledging their theoretical limitations.

To complement the simulation study, we develop analytical approximations
for the expected behavior of each method under high-dimensional asymptotics
where both p and n grow large with p/n — (0, ). These theoretical results pro-
vide a framework for interpreting the simulation findings and identifying general
principles governing dimensional effects. The combination of extensive simula-
tions and supporting theory ensures that our conclusions are both empirically
grounded and theoretically sound.

3 Results

Our simulation results reveal a complex landscape of dimensional effects on clas-
sical statistical methods, with several surprising findings that challenge conven-
tional wisdom. Beginning with estimation techniques, we observe that ordinary
least squares exhibits a gradual deterioration in performance that begins much
earlier than typically recognized. While the complete breakdown at p = n is
well-known, we find that significant bias and variance inflation emerge when
p/n exceeds approximately 0.1, with the severity depending on the correlation
structure among predictors. In the presence of high correlation, even p/n ratios
as low as 0.05 can induce substantial estimation instability.

Maximum likelihood estimation demonstrates similar sensitivity to dimen-
sionality, though the specific patterns vary by model family. For Gaussian mod-
els, MLE and OLS show nearly identical dimensional fragility, while for binary
outcomes, logistic regression exhibits somewhat greater robustness in moderate-
dimensional regimes, though still deteriorating severely as p approaches n. The
relative performance across estimation methods highlights that no classical tech-
nique remains unaffected by increasing dimensionality, though the rate and na-
ture of deterioration differ.

Inference procedures reveal even more concerning patterns. Empirical cov-
erage rates for 95

Model selection criteria exhibit unexpected behavior in high-dimensional set-
tings. While AIC and BIC are asymptotically optimal under different regimes,
we find that both criteria experience breakdowns when p/n exceeds certain
thresholds. AIC tends to select overly complex models as dimensionality in-
creases, while BIC becomes excessively conservative, often failing to identify
true signals. The crossover point where BIC begins to outperform AIC occurs
at much lower p/n ratios than previously recognized, suggesting that standard
guidelines for criterion selection require revision in modern data contexts.

An important and novel finding concerns the interaction between dimension-
ality and correlation structure. We demonstrate that high correlation among



predictors can either mitigate or exacerbate dimensional effects depending on
the specific statistical procedure and the nature of the true underlying signal.
For estimation, high correlation generally accelerates performance deteriora-
tion, while for inference, the effects are more complex, with certain correlation
patterns actually improving error rate control in moderate dimensions before
causing complete breakdown in higher dimensions.

Our results also highlight the limitations of common diagnostic tools in high-
dimensional settings. Traditional measures like R-squared and residual plots
become increasingly misleading as dimensionality grows, often suggesting good
model fit even when parameter estimates are unstable and inference is invalid.
This creates a dangerous situation where researchers may draw confident but
erroneous conclusions from standard statistical output.

4 Conclusion

This research provides a systematic evaluation of how high-dimensional data im-
pacts classical statistical inference and estimation techniques, revealing critical
limitations that have profound implications for scientific practice. Our find-
ings demonstrate that the deterioration of classical methods begins at much
lower dimensional ratios than commonly recognized, with significant perfor-
mance degradation often occurring when p/n exceeds 0.1-0.2 rather than at the
p = n boundary that has received primary attention. This suggests that many
contemporary datasets, particularly in fields like genomics, neuroscience, and
digital analytics, already operate in regimes where classical methods may be
producing misleading results.

The interaction between dimensionality and other data characteristics, par-
ticularly correlation structure, emerges as a crucial factor that previous research
has largely overlooked. Our results show that correlation can either accelerate
or temporarily mask dimensional effects depending on the specific statistical
procedure and the nature of the underlying signal. This complexity underscores
the need for diagnostic tools that can alert researchers to potential dimensional
problems in their specific analytical context.

Our development of three complementary metrics—inference stability, esti-
mation consistency, and predictive reliability—provides a framework for assess-
ing dimensional fragility that extends beyond the current literature’s focus on
individual performance measures. By evaluating methods across these dimen-
sions simultaneously, we capture a more complete picture of how dimensionality
affects the entire statistical analysis pipeline.

The practical implications of our findings are substantial. Researchers work-
ing with modern datasets should exercise caution when applying classical statis-
tical methods, even in situations where p remains substantially smaller than n.
Standard diagnostic tools may fail to alert users to dimensional problems, creat-
ing a false sense of security. Our results suggest the need for revised statistical
training that emphasizes the limitations of classical methods in high-dimensional
settings and introduces dimension-robust alternatives.



From a theoretical perspective, our findings challenge the conventional asymp-
totic framework that underpins much of classical statistics. The assumption that
p remains fixed while n grows indefinitely is increasingly untenable in many sci-
entific domains, necessitating new theoretical developments that explicitly ac-
count for dimensional scaling. Our analytical approximations provide a step in
this direction, but substantial work remains to develop a comprehensive theory
for high-dimensional statistical inference.

Future research should extend our framework to more complex models, in-
cluding generalized linear models, survival analysis, and time series, where di-
mensional effects may manifest differently. Additionally, investigating the per-
formance of modern high-dimensional methods—such as regularization tech-
niques, Bayesian approaches, and dimension reduction methods—across the
same comprehensive set of scenarios would provide valuable guidance for prac-
titioners navigating the challenges of contemporary data analysis.

In conclusion, as data collection capabilities continue to advance across scien-
tific disciplines, the dimensional challenges identified in this research will become
increasingly prevalent. Developing a thorough understanding of how dimension-
ality affects statistical procedures, and creating methods that remain reliable
in high-dimensional settings, represents one of the most important frontiers in
statistical science today.
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