Exploring the Relationship Between Credit Expansion and Asset Bubble Formation in the Real Estate Sector

Samuel Smith, Sarah Davis, Sarah Harris October 20, 2025

Abstract

This research investigates the complex relationship between credit expansion and asset bubble formation in real estate markets through a novel computational framework that integrates agent-based modeling with machine learning techniques. Traditional economic models have struggled to capture the non-linear dynamics and heterogeneous behaviors that characterize real estate bubbles, often relying on simplified assumptions about market participants and credit mechanisms. Our approach introduces a multi-agent system where heterogeneous agents—including households, investors, developers, and financial institutions—interact within a simulated real estate market environment. The model incorporates adaptive learning mechanisms where agents update their expectations and behaviors based on market outcomes and credit availability. We employ deep reinforcement learning to model the strategic behavior of financial institutions in credit allocation, capturing the endogenous nature of credit creation during boom periods. The methodology represents a significant departure from conventional econometric approaches by emphasizing the emergent properties of complex systems rather than relying on equilibrium assumptions. Our results demonstrate that credit expansion alone is insufficient to generate sustained real estate bubbles; rather, the interaction between credit availability, heterogeneous expectations, and institutional behaviors creates the conditions for bubble formation. The model reveals threshold effects where credit growth beyond certain levels triggers self-reinforcing price dynamics that decouple from fundamental valuations. Furthermore, we identify specific patterns in the temporal evolution of credit-real estate relationships that serve as early warning indicators of bubble formation. These findings provide new insights for policymakers seeking to manage financial stability and suggest that traditional monetary policy tools may need to be supplemented with targeted macroprudential measures that account for the complex, adaptive nature of real estate markets.

1 Introduction

The relationship between credit expansion and asset bubble formation represents one of the most critical yet poorly understood phenomena in financial economics. Real estate markets, in particular, have been the epicenter of numerous financial crises throughout history, from the Japanese asset price bubble of the late 1980s to the subprime mortgage crisis that triggered the Global Financial Crisis of 2007-2008. While conventional wisdom acknowledges that credit growth often precedes real estate bubbles, the precise mechanisms through which credit expansion translates into unsustainable price appreciation remain elusive. Traditional economic models, grounded in rational expectations and efficient market hypotheses, have proven inadequate in explaining the boom-bust cycles that characterize real estate markets.

This research addresses fundamental gaps in our understanding of credit-real estate dynamics by developing an innovative computational framework that moves beyond the limitations of traditional econometric approaches. The central research question examines not merely whether credit expansion causes real estate bubbles, but under what specific conditions, through what transmission mechanisms, and with what temporal patterns this relationship manifests. We investigate how heterogeneous market participants—each with distinct objectives, constraints, and behavioral rules—respond to credit availability and collectively generate market outcomes that may deviate significantly from fundamental valuations.

Our approach challenges several conventional assumptions in the literature. First, we reject the notion of representative agents in favor of heterogeneous agents with varying risk preferences, investment horizons, and adaptive learning capabilities. Second, we model credit creation as an endogenous process driven by strategic interactions between borrowers and lenders, rather than treating credit supply as an exogenous variable. Third, we incorporate the feedback loops between price expectations, collateral values, and credit constraints that characterize real-world real estate markets. These methodological innovations allow us to capture the emergent properties of complex financial systems and provide new insights into the dynamics of bubble formation.

The significance of this research extends beyond academic interest to practical policy implications. By identifying the specific conditions under which credit expansion leads to unsustainable real estate price appreciation, our findings can inform the design of macroprudential policies aimed at promoting financial stability. Furthermore, the early warning indicators derived from our model could help regulators detect emerging vulnerabilities in real estate markets before they escalate into systemic threats.

2 Methodology

Our methodological approach represents a fundamental departure from traditional econometric modeling of real estate markets. We develop a comprehensive agent-based model (ABM) integrated with machine learning components to capture the complex, adaptive nature of credit-real estate relationships. The model consists of four primary agent types: households, real estate investors, property developers, and financial institutions. Each agent category exhibits distinct behavioral rules, objectives, and constraints that evolve through adaptive learning mechanisms.

Household agents in our model make consumption, savings, and housing decisions based on lifetime utility maximization subject to budget constraints. Their housing demand responds to both fundamental factors (income, demographic characteristics) and speculative motives (price expectations, herd behavior). We implement an expectation formation mechanism where households update their price forecasts using a combination of extrapolative and fundamentalist rules, with the weight on each rule adapting based on recent forecast accuracy. This approach captures the psychological dimension of real estate markets often overlooked in traditional models.

Real estate investor agents pursue profit maximization through property acquisition and disposition decisions. Unlike households, investors face fewer liquidity constraints and exhibit stronger speculative tendencies. Their investment strategies incorporate momentum trading, contrarian approaches, and value investing, with the prevalence of each strategy evolving endogenously based on performance. The heterogeneity in investor strategies generates the diverse market behaviors observed in actual real estate cycles.

Property developer agents determine new construction based on profit expectations, construction costs, and financing availability. Their decisions introduce important supply-side dynamics that interact with demand factors to determine market equilibrium. Developers face time-to-build lags and financing constraints that create non-linear responses to market conditions, contributing to the cyclical nature of real estate markets.

Financial institution agents represent the core innovation in our credit modeling approach. Rather than treating credit supply as exogenous, we model banks as strategic actors that optimize their lending policies using deep reinforcement learning algorithms. Banks learn to allocate credit across different borrower types (households, investors, developers) based on risk-return considerations, regulatory constraints, and competitive pressures. The reinforcement learning framework allows banks to develop sophisticated lending strategies that adapt to changing market conditions, capturing the endogenous nature of credit creation during boom periods.

The market clearing mechanism in our model incorporates both transaction volumes and price discovery. Property prices emerge from the interaction of supply and demand through a decentralized matching process with heterogeneous search and bargaining behaviors. This approach generates realistic price dynamics that reflect both fundamental valuations and speculative pressures.

We calibrate the model using historical data from multiple real estate cycles across different jurisdictions, ensuring that the simulated outcomes align with empirical regularities. The calibration process involves estimating key behavioral parameters through a combination of empirical estimation and computa-

tional optimization techniques. We validate the model by testing its ability to replicate known historical episodes of real estate booms and busts that were not used in the calibration process.

The integration of machine learning with agent-based modeling represents a methodological innovation that addresses several limitations of traditional approaches. First, it allows for more realistic representation of strategic behavior by financial institutions. Second, it captures the adaptive nature of market participants' decision rules. Third, it enables the emergence of complex market dynamics from relatively simple micro-level behaviors. This hybrid approach provides a more comprehensive framework for understanding the non-linear relationships between credit expansion and real estate bubble formation.

3 Results

Our simulation results reveal several important insights into the relationship between credit expansion and real estate bubble formation. First, we find that credit growth alone is insufficient to generate sustained real estate bubbles. Rather, bubbles emerge from the interaction between credit availability and specific market conditions, including the composition of borrowers, the nature of credit instruments, and the prevailing expectation formation mechanisms.

A key finding concerns the threshold effects in credit-real estate relationships. Our simulations identify critical levels of credit growth beyond which price dynamics become self-reinforcing and decouple from fundamental valuations. These thresholds vary depending on initial market conditions, with overvalued markets exhibiting lower critical credit growth levels. The threshold behavior explains why similar credit expansion rates can produce dramatically different outcomes across markets and time periods.

The composition of credit expansion proves to be as important as its magnitude. Credit flows directed toward speculative investors generate significantly stronger bubble dynamics than credit extended to owner-occupiers. This finding challenges the conventional focus on aggregate credit metrics and highlights the importance of monitoring the distribution of credit across different borrower types.

Our results demonstrate the crucial role of expectation feedback mechanisms in amplifying the impact of credit expansion. When price expectations become increasingly extrapolative—meaning market participants expect future price increases based on past appreciation—even moderate credit growth can trigger substantial price bubbles. The transition from fundamental-based to momentum-based expectation formation represents a critical phase in bubble development that often precedes dramatic price increases.

Financial institution behavior emerges as a central driver of bubble dynamics. Banks' lending strategies evolve during boom periods in ways that reinforce credit expansion. As collateral values increase, banks perceive lower lending risks and relax credit standards, creating a positive feedback loop between credit availability and property prices. This endogenous credit creation mechanism

amplifies the initial impact of exogenous credit shocks and contributes to the non-linearity of bubble formation.

The temporal evolution of credit-real estate relationships reveals distinctive patterns that serve as early warning indicators of bubble formation. We identify a specific sequence of events: initial credit expansion primarily benefits fundamental demand, followed by increasing speculative activity, then deterioration in lending standards, and finally the decoupling of prices from fundamentals. Monitoring this sequence provides regulators with actionable signals for intervention before bubbles become entrenched.

Our simulations also shed light on the differential impact of various policy interventions. Traditional monetary policy tools (interest rate adjustments) prove relatively ineffective in containing real estate bubbles once expectation feedback mechanisms become dominant. In contrast, targeted macroprudential measures—such as loan-to-value limits, debt-to-income restrictions, and sectoral capital requirements—demonstrate greater efficacy in dampening bubble dynamics without causing broader economic disruption.

The model successfully replicates several historical real estate bubbles, including the U.S. subprime crisis and the Nordic banking crises of the early 1990s. In each case, the simulated bubble dynamics closely match the empirical patterns in terms of timing, magnitude, and transmission mechanisms. This validation strengthens confidence in the model's ability to provide insights into contemporary real estate market developments.

4 Conclusion

This research makes several original contributions to our understanding of the relationship between credit expansion and real estate bubble formation. Methodologically, we introduce a novel computational framework that integrates agent-based modeling with machine learning techniques, overcoming limitations of traditional econometric approaches. This framework captures the complex, adaptive nature of real estate markets and provides a more realistic representation of the micro-foundations of bubble dynamics.

Substantively, our findings challenge simplistic narratives that equate credit growth with bubble formation. We demonstrate that the impact of credit expansion depends critically on market structure, agent heterogeneity, expectation formation mechanisms, and institutional behaviors. The identification of threshold effects, composition effects, and feedback loops provides a more nuanced understanding of how credit influences real estate prices.

The policy implications of our research are significant. The early warning indicators derived from our model offer practical tools for regulators seeking to promote financial stability. The differential effectiveness of various policy interventions suggests that policymakers should employ a combination of traditional monetary tools and targeted macroprudential measures, with the specific mix tailored to market conditions and the stage of the financial cycle.

Several directions for future research emerge from this study. First, extend-

ing the model to incorporate international capital flows would enhance our understanding of global real estate cycles. Second, integrating more detailed modeling of financial innovation and securitization would provide insights into the evolving nature of credit channels. Third, applying the framework to commercial real estate markets would reveal important differences in bubble dynamics across property types.

In conclusion, our research demonstrates that real estate bubbles emerge from the complex interaction of credit expansion with market structure, agent behaviors, and institutional factors. By moving beyond traditional modeling approaches and embracing computational methods that capture this complexity, we gain new insights into one of the most persistent challenges in financial economics. The framework developed in this paper provides a foundation for continued research into the dynamics of asset bubbles and the design of effective financial stability policies.

References

Aoki, K., Proudman, J., Vlieghe, G. (2004). House prices, consumption, and monetary policy: A financial accelerator approach. Journal of Financial Intermediation, 13(4), 414-435.

Borio, C., Lowe, P. (2002). Asset prices, financial and monetary stability: exploring the nexus. BIS Working Papers, 114, 1-35.

Geanakoplos, J. (2010). The leverage cycle. NBER Macroeconomics Annual, 24(1), 1-65.

Glaeser, E. L., Gyourko, J., Saiz, A. (2008). Housing supply and housing bubbles. Journal of Urban Economics, 64(2), 198-217.

Goodhart, C., Hofmann, B. (2008). House prices, money, credit, and the macroeconomy. Oxford Review of Economic Policy, 24(1), 180-205.

Himmelberg, C., Mayer, C., Sinai, T. (2005). Assessing high house prices: Bubbles, fundamentals and misperceptions. Journal of Economic Perspectives, 19(4), 67-92.

Mian, A., Sufi, A. (2009). The consequences of mortgage credit expansion: Evidence from the US mortgage default crisis. Quarterly Journal of Economics, 124(4), 1449-1496.

Shiller, R. J. (2015). Irrational exuberance. Princeton University Press.

Stein, J. C. (1995). Prices and trading volume in the housing market: A model with down-payment effects. Quarterly Journal of Economics, 110(2), 379-406.

Wheaton, W. C. (1999). Real estate cycles: some fundamentals. Real Estate Economics, 27(2), 209-230.