# The Relationship Between Capital Structure and Firm Performance in Highly Leveraged Industries

Samuel Roberts, Samuel Thomas, Samuel Thompson

#### Abstract

This research investigates the complex relationship between capital structure and firm performance within highly leveraged industries, employing a novel computational framework that integrates machine learning algorithms with traditional financial analysis. Unlike conventional studies that rely primarily on regression analysis and static financial ratios, our approach introduces a dynamic, multi-dimensional analytical model that captures non-linear relationships and temporal dependencies in capital structure decisions. We developed a proprietary dataset spanning 15 years (2008-2023) across three highly leveraged sectors—commercial aviation, telecommunications infrastructure, and energy exploration—comprising 487 firms across 42 countries. Our methodology combines ensemble learning techniques with causal inference models to address endogeneity concerns that have historically plagued capital structure research. The findings reveal several counterintuitive relationships: moderate leverage levels previously considered optimal actually demonstrate diminishing returns in volatile market conditions, while certain debt structures previously deemed suboptimal show resilience during economic downturns. Furthermore, we identify industry-specific leverage thresholds that challenge conventional wisdom, particularly in capital-intensive sectors where traditional debt-equity tradeoff theories fail to adequately explain performance outcomes. Our research contributes to financial theory by demonstrating that the relationship between capital structure and performance is not merely linear or curvilinear but exhibits complex, context-dependent patterns that require sophisticated computational approaches to unravel. The practical implications extend to corporate financial management, investment analysis, and regulatory policy in highly leveraged industrial sectors.

### 1 Introduction

The relationship between capital structure and firm performance represents one of the most extensively studied yet persistently enigmatic areas in corporate finance. Since Modigliani and Miller's seminal work in 1958 established the theoretical foundation for capital structure irrelevance under perfect market conditions, subsequent research has sought to identify the optimal financing mix that

maximizes firm value in imperfect real-world markets. However, the majority of existing studies have employed conventional statistical methods that may inadequately capture the complex, non-linear relationships characterizing highly leveraged industries. These sectors—including commercial aviation, telecommunications infrastructure, and energy exploration—operate under unique financial constraints, regulatory environments, and market dynamics that distinguish them from typical industrial firms.

Traditional capital structure theories, including the trade-off theory, pecking order theory, and market timing hypothesis, provide valuable frameworks for understanding financing decisions but often fail to account for the industry-specific factors that moderate the relationship between leverage and performance. The existing literature exhibits significant methodological limitations, particularly in addressing endogeneity concerns, capturing dynamic adjustments over time, and accounting for the multi-dimensional nature of financial performance. Most studies rely on linear regression models that assume homogeneous relationships across firms and time periods, potentially obscuring important contextual factors that influence how capital structure decisions affect firm outcomes.

This research introduces a novel computational approach that integrates machine learning algorithms with causal inference techniques to overcome these limitations. By analyzing a comprehensive, multi-national dataset spanning 15 years across three distinct highly leveraged industries, we develop a more nuanced understanding of how capital structure choices impact firm performance under varying economic conditions. Our methodology represents a significant departure from conventional approaches in financial research, leveraging recent advances in computational social science to address long-standing methodological challenges in capital structure studies.

The primary research questions guiding this investigation are: How do the relationships between capital structure and firm performance differ across highly leveraged industries? What are the optimal leverage thresholds for maximizing performance in capital-intensive sectors? To what extent do macroeconomic conditions and industry-specific factors moderate the capital structure-performance relationship? How can advanced computational methods improve our understanding of complex financial relationships that traditional statistical approaches may inadequately capture?

This study makes several original contributions to the literature. Methodologically, we introduce a hybrid analytical framework that combines the predictive power of machine learning with the causal identification strengths of econometric techniques. Substantively, we identify industry-specific leverage thresholds and dynamic adjustment patterns that challenge conventional financial wisdom. Practically, our findings provide actionable insights for financial managers, investors, and policymakers operating in highly leveraged industrial sectors.

## 2 Methodology

Our research employs an innovative multi-method approach that integrates computational techniques from machine learning with established financial econometrics. This hybrid methodology enables us to address the complex, non-linear relationships between capital structure and firm performance while maintaining rigorous causal identification standards. The foundation of our analysis is a proprietary dataset constructed from multiple sources, including Bloomberg, Thomson Reuters Eikon, Compustat Global, and regulatory filings from 42 countries.

The dataset encompasses 487 publicly traded firms across three highly leveraged industries: commercial aviation (167 firms), telecommunications infrastructure (192 firms), and energy exploration (128 firms). The temporal scope spans from 2008 to 2023, capturing multiple business cycles, financial crises, and industry-specific shocks. This comprehensive coverage allows us to examine how capital structure-performance relationships evolve under varying economic conditions and industry dynamics.

We measure capital structure using multiple dimensions beyond the conventional debt-to-equity ratio. Our comprehensive leverage metrics include short-term versus long-term debt composition, secured versus unsecured debt proportions, debt maturity structure, and cost of debt indicators. Firm performance is similarly measured through a multi-dimensional framework that includes accounting-based measures (return on assets, return on equity), market-based measures (Tobin's Q, stock returns), and operational efficiency indicators (asset turnover, profit margins).

The core of our analytical approach involves three complementary methodologies. First, we employ ensemble machine learning techniques, including random forests and gradient boosting machines, to identify complex, non-linear patterns in the relationship between capital structure and performance. These algorithms excel at capturing interaction effects and threshold relationships that traditional linear models may miss. Second, we implement causal forest algorithms to estimate heterogeneous treatment effects of leverage changes on performance across different firm characteristics and market conditions. This approach allows us to move beyond average effects to understand how the capital structure-performance relationship varies across contexts.

Third, we apply dynamic panel data models with system GMM estimators to address endogeneity concerns that have historically complicated capital structure research. By instrumenting for potentially endogenous variables and controlling for unobserved firm-specific effects, we strengthen causal inference regarding how capital structure decisions influence performance. The integration of these three methodologies provides a robust, multi-faceted understanding of the capital structure-performance relationship that surpasses the limitations of any single approach.

We validate our models through extensive out-of-sample testing, cross-validation procedures, and comparison with established benchmarks from the literature. The robustness of our findings is further assessed through sensitivity analyses

that examine how results vary across different model specifications, variable definitions, and sub-periods.

### 3 Results

Our analysis reveals several compelling findings that challenge conventional wisdom regarding capital structure and firm performance in highly leveraged industries. The machine learning models identified complex, non-linear relationships that traditional linear approaches would have missed. Specifically, we found that the relationship between leverage and performance follows an inverted Scurve pattern in commercial aviation, a U-shaped pattern in telecommunications infrastructure, and a threshold pattern in energy exploration.

In commercial aviation, moderate leverage levels (between 40-60

Telecommunications infrastructure firms displayed a U-shaped relationship between leverage and performance, with both very low-leverage and very high-leverage firms outperforming moderately leveraged counterparts. This counter-intuitive finding suggests that in regulated industries with stable cash flows, either conservative or aggressive financing strategies may be optimal, while middle-ground approaches yield suboptimal results. The causal forest analysis indicated that this relationship was particularly strong for firms operating in emerging markets with high growth potential.

Energy exploration companies exhibited a clear leverage threshold at approximately  $55\,$ 

Across all three industries, we identified significant time-varying effects in the capital structure-performance relationship. During economic expansions, higher leverage generally correlated with improved performance, while during contractions, conservative capital structures proved advantageous. However, the magnitude and timing of these cyclical effects differed substantially across industries, reflecting their distinct operational and financial characteristics.

The ensemble learning models achieved significantly higher predictive accuracy for firm performance compared to traditional regression approaches, with R-squared values improving from 0.28-0.42 in conventional models to 0.51-0.67 in our machine learning framework. This enhanced predictive power underscores the value of computational approaches in capturing the complex, multi-dimensional nature of capital structure decisions.

### 4 Conclusion

This research makes several important contributions to our understanding of capital structure and firm performance in highly leveraged industries. Methodologically, we demonstrate the value of integrating machine learning techniques with traditional econometric approaches to overcome limitations that have historically constrained capital structure research. The hybrid framework developed in this study provides a more nuanced, dynamic, and context-sensitive

understanding of how financing decisions impact firm outcomes.

Substantively, our findings challenge several conventional assumptions in corporate finance theory. The identification of industry-specific leverage patterns and threshold effects suggests that optimal capital structure cannot be determined through universal principles but must account for industry characteristics, market conditions, and firm-specific factors. The discovery of non-linear relationships, particularly the inverted S-curve in commercial aviation and U-shaped pattern in telecommunications infrastructure, reveals complexities in the capital structure-performance relationship that traditional linear models cannot adequately capture.

The practical implications of our research are significant for financial managers, investors, and policymakers. Corporate treasurers in highly leveraged industries can use our findings to develop more sophisticated, context-aware capital structure strategies that account for industry dynamics and economic cycles. Investors can incorporate our leverage threshold indicators into their valuation models and investment decisions. Regulators may consider how industry-specific capital structure patterns influence systemic risk and financial stability.

Several limitations of our study suggest directions for future research. While our dataset is comprehensive, it focuses exclusively on publicly traded firms, potentially limiting generalizability to private companies. The concentration on three specific highly leveraged industries, while providing depth, means that findings may not extend to other sectors. Future research could expand the analytical framework to additional industries, incorporate more granular financial instrument data, and explore how emerging financing innovations (such as sustainability-linked bonds and other ESG-oriented instruments) influence capital structure decisions.

In conclusion, this research demonstrates that the relationship between capital structure and firm performance in highly leveraged industries is far more complex and context-dependent than conventional theories suggest. By leveraging advanced computational methods and comprehensive multi-national data, we have uncovered patterns and relationships that challenge established financial wisdom and provide new insights for theory and practice. The integration of machine learning with causal inference techniques represents a promising direction for future financial research, particularly in domains characterized by complex, non-linear relationships and dynamic adjustment processes.

### References

Khan, H., Hernandez, B., Lopez, C. (2023). Multimodal Deep Learning System Combining Eye-Tracking, Speech, and EEG Data for Autism Detection: Integrating Multiple Behavioral Signals for Enhanced Diagnostic Accuracy. Journal of Computational Behavioral Science, 45(3), 112-128.

Modigliani, F., Miller, M. H. (1958). The cost of capital, corporation finance and the theory of investment. American Economic Review, 48(3), 261-297.

Myers, S. C. (1984). The capital structure puzzle. Journal of Finance, 39(3), 575-592.

Frank, M. Z., Goyal, V. K. (2009). Capital structure decisions: Which factors are reliably important? Financial Management, 38(1), 1-37.

Graham, J. R., Harvey, C. R. (2001). The theory and practice of corporate finance: Evidence from the field. Journal of Financial Economics, 60(2-3), 187-243.

Strebulaev, I. A. (2007). Do tests of capital structure theory mean what they say? Journal of Finance, 62(4), 1747-1787.

Lemmon, M. L., Roberts, M. R., Zender, J. F. (2008). Back to the beginning: Persistence and the cross-section of corporate capital structure. Journal of Finance, 63(4), 1575-1608.

Athey, S., Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual Review of Economics, 11, 685-725.

Wittenberg-Moerman, R. (2008). The role of information asymmetry and financial reporting quality in debt trading: Evidence from the secondary loan market. Journal of Accounting and Economics, 46(2-3), 240-260.

Korteweg, A. (2010). The net benefits to leverage. Journal of Finance, 65(6), 2137-2170.