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1 Introduction

Autism Spectrum Disorder (ASD) represents a complex neurodevelopmental
condition characterized by challenges in social communication, restricted inter-
ests, and repetitive behaviors. The current diagnostic landscape for ASD relies
heavily on clinical observation, parent interviews, and standardized assessment
tools such as the Autism Diagnostic Observation Schedule (ADOS) and Autism
Diagnostic Interview-Revised (ADI-R). While these methods have proven valu-
able, they suffer from several limitations including subjectivity, inter-rater vari-
ability, and significant delays in diagnosis that can impact early intervention
outcomes. The average age of ASD diagnosis in the United States remains
around 4-5 years, despite evidence that reliable detection is possible as early as
18-24 months. This diagnostic gap represents a critical challenge in the field of
developmental psychiatry and underscores the need for more objective, quanti-
tative approaches to ASD assessment.

Recent advances in computational methods and sensing technologies have
opened new possibilities for automated ASD detection. However, most existing
computational approaches have focused on single modalities, such as analyzing
only eye-tracking data or exclusively examining speech patterns. These uni-
modal systems fail to capture the multifaceted nature of ASD, which manifests
across multiple behavioral and neurophysiological domains. The integration
of complementary data sources represents a promising direction for enhancing
diagnostic accuracy and developing more comprehensive assessment tools.

This research introduces a novel multimodal deep learning framework that
simultaneously processes eye-tracking, speech, and EEG data to create a holis-
tic profile of ASD-related characteristics. Our approach is grounded in the
understanding that ASD affects multiple interconnected systems, including vi-
sual attention, language processing, and neural connectivity. By leveraging
recent developments in multimodal fusion techniques and cross-modal learning,
we have developed a system that not only achieves high diagnostic accuracy
but also provides insights into the relative contributions of different behavioral
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domains to the overall ASD phenotype.
The primary contributions of this work are threefold. First, we present a

novel architectural design for multimodal fusion that incorporates cross-modal
attention mechanisms to dynamically weight the importance of each data stream
based on individual presentation. Second, we introduce specialized processing
pipelines for each modality that capture domain-specific features relevant to
ASD detection. Third, we demonstrate through extensive experimentation that
our multimodal approach significantly outperforms single-modality systems and
existing multimodal baselines, particularly for cases with subtle or atypical pre-
sentations.

2 Methodology

2.1 Participants and Data Collection

Our study involved 450 participants recruited through collaboration with mul-
tiple clinical centers and research institutions. The participant pool comprised
225 individuals with clinically confirmed ASD diagnoses and 225 neurotypical
controls, balanced for age (range: 3-18 years), gender, and nonverbal IQ. All
ASD diagnoses were confirmed using gold-standard assessment tools including
ADOS-2 and ADI-R, with severity levels ranging from mild to severe across the
spectrum. The control group consisted of typically developing individuals with
no history of neurological or psychiatric conditions.

Data collection followed a standardized protocol administered in controlled
laboratory settings. Each participant completed three experimental tasks de-
signed to elicit modality-specific responses. The eye-tracking component utilized
a Tobii Pro Spectrum eye tracker sampling at 600 Hz while participants viewed
social scenes, face stimuli, and geometric patterns. The speech assessment in-
volved a structured conversational task where participants described a series of
images and responded to social scenarios, recorded using high-quality micro-
phones at 44.1 kHz. The EEG data was collected using a 64-channel Biosemi
ActiveTwo system during resting state and during social cognitive tasks, with
impedance maintained below 10 k throughout recording sessions.

2.2 Data Preprocessing and Feature Extraction

For the eye-tracking modality, we implemented a comprehensive preprocessing
pipeline that included fixation detection using a dispersion-threshold algorithm,
saccade identification, and blink artifact removal. We extracted both low-level
features (fixation duration, saccade amplitude, pupil diameter) and higher-level
behavioral metrics including social attention ratio (time spent looking at social
vs. non-social regions), face scanning patterns, and visual exploration consis-
tency. Dynamic features capturing temporal patterns of visual attention were
also computed using sliding window approaches.
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The speech processing pipeline involved noise reduction using spectral sub-
traction, voice activity detection, and segmentation into utterance-level units.
We extracted a diverse set of acoustic features including fundamental frequency
(F0) contours, formant frequencies, jitter, shimmer, and harmonic-to-noise ra-
tio. Prosodic features encompassed speech rate, pause patterns, and intonation
contours. Linguistic analysis included measures of lexical diversity, syntactic
complexity, and pragmatic language use, derived through automatic transcrip-
tion and natural language processing techniques.

EEG preprocessing followed established guidelines including bandpass filter-
ing (0.5-45 Hz), notch filtering at 60 Hz, artifact removal using independent
component analysis, and re-referencing to average reference. Feature extrac-
tion focused on both spectral characteristics (power in delta, theta, alpha, beta,
and gamma bands) and functional connectivity measures (phase locking value,
weighted phase lag index) across different brain regions. We also computed
asymmetry indices and complexity measures such as sample entropy to capture
non-linear dynamics of neural signals.

2.3 Multimodal Fusion Architecture

The core innovation of our approach lies in the multimodal fusion architecture,
which integrates information from all three modalities through a hierarchical
processing framework. Each modality is first processed through dedicated deep
learning encoders that transform raw features into meaningful representations.
The eye-tracking stream utilizes a combination of convolutional neural networks
for spatial pattern recognition and long short-term memory networks for tem-
poral dynamics. The speech modality employs a dual-path architecture with
convolutional layers for spectral feature extraction and recurrent networks for
sequential modeling. The EEG processing incorporates graph neural networks
to capture brain connectivity patterns alongside convolutional-recurrent hybrids
for spatiotemporal analysis.

The fusion mechanism operates at multiple levels to capture both early and
late interactions between modalities. We introduce a novel cross-modal atten-
tion module that computes attention weights based on the compatibility between
representations from different modalities. This allows the model to dynamically
emphasize certain data streams when they provide particularly discriminative
information for a given individual. The attention mechanism is formulated as
follows:

αij =
exp(sim(hi, hj))∑N
k=1 exp(sim(hi, hk))

(1)

where hi and hj represent hidden representations from different modalities,
and sim denotes a compatibility function implemented as a learned bilinear
transformation.

The fused representations are further processed through a series of fully
connected layers with residual connections and batch normalization to facilitate
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stable training. The final classification layer outputs probability scores for ASD
and control classes, with the entire model trained end-to-end using a combined
loss function incorporating cross-entropy for classification and contrastive losses
to encourage modality-invariant representations.

2.4 Experimental Design and Evaluation

We employed a nested cross-validation strategy with 5 outer folds and 3 inner
folds to ensure robust performance estimation and hyperparameter optimiza-
tion. The dataset was stratified by age, gender, and severity level to maintain
balanced distributions across folds. Performance was evaluated using standard
metrics including accuracy, precision, recall, F1-score, and area under the re-
ceiver operating characteristic curve (AUC-ROC).

We compared our proposed multimodal system against several baselines: (1)
unimodal systems using only eye-tracking, speech, or EEG data; (2) early fusion
approaches that concatenate features before modeling; (3) late fusion methods
that combine predictions from separate models; and (4) existing multimodal
architectures from recent literature. Statistical significance of performance dif-
ferences was assessed using permutation tests with 1000 iterations.

3 Results

The comprehensive evaluation of our multimodal system demonstrated superior
performance compared to all baseline approaches. The proposed model achieved
an overall accuracy of 94.3

When comparing against unimodal systems, the performance advantage of
our multimodal approach was substantial and statistically significant (p ¡ 0.001).
The eye-tracking-only model achieved 78.2

Our multimodal fusion architecture also outperformed alternative fusion
strategies. Early feature concatenation achieved 85.7

The cross-modal attention mechanism proved particularly valuable for han-
dling the heterogeneity of ASD presentations. Analysis of attention weights
revealed that the model dynamically adjusted its reliance on different modali-
ties based on individual characteristics. For younger participants and those with
limited verbal abilities, the system placed greater emphasis on eye-tracking and
EEG data. For verbal individuals with more subtle social communication chal-
lenges, speech features received higher attention weights while still benefiting
from complementary information from other modalities.

We further investigated performance across different demographic and clini-
cal subgroups to assess the generalizability of our approach. The system main-
tained strong performance across age groups, with accuracies of 92.8

Ablation studies provided insights into the relative contributions of different
system components. Removing the cross-modal attention mechanism resulted
in a 3.2

4



4 Conclusion

This research has presented a novel multimodal deep learning system for ASD
detection that integrates eye-tracking, speech, and EEG data through an ad-
vanced fusion architecture. Our approach addresses fundamental limitations of
existing diagnostic methods by providing an objective, quantitative assessment
that captures the multifaceted nature of ASD across behavioral and neurophysi-
ological domains. The demonstrated performance advantage over unimodal and
alternative multimodal approaches underscores the value of comprehensive data
integration for complex neurodevelopmental conditions.

The cross-modal attention mechanism represents a significant technical con-
tribution, enabling the system to adaptively weight different information sources
based on individual presentation. This flexibility is particularly valuable for
ASD given its substantial heterogeneity and the varying salience of different be-
havioral markers across individuals. Our analysis of attention patterns provides
insights into how different modalities contribute to detection accuracy across
demographic and clinical subgroups.

Several limitations of the current work warrant mention. The data collection
required controlled laboratory settings and specialized equipment, which may
limit immediate translation to clinical practice. Future work should explore
the feasibility of implementing similar approaches using more accessible tech-
nologies, such as webcam-based eye tracking or consumer-grade EEG devices.
Additionally, while our dataset was substantial and diverse, further validation
across different cultural and linguistic contexts is needed to ensure broad appli-
cability.

The implications of this research extend beyond improved detection accu-
racy. The rich multimodal representations learned by our system could poten-
tially inform ASD subtyping efforts and contribute to a more nuanced under-
standing of the condition’s biological and behavioral heterogeneity. By identify-
ing which combinations of features are most discriminative for different individ-
uals, the approach may eventually support personalized intervention planning.

In conclusion, our multimodal framework represents a significant step toward
more objective, comprehensive, and accessible ASD assessment. The integra-
tion of complementary data sources through advanced deep learning techniques
demonstrates the potential of computational approaches to augment clinical ex-
pertise and address critical challenges in developmental psychiatry. As sensing
technologies continue to advance and computational methods become more so-
phisticated, we anticipate that multimodal systems will play an increasingly
important role in early detection and personalized support for neurodevelop-
mental conditions.
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