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Abstract

This paper presents a novel neural architecture search (NAS) frame-
work that optimizes convolutional neural networks for both accuracy and
computational efficiency. Traditional NAS methods often prioritize accu-
racy while neglecting computational constraints, leading to models that
are impractical for real-world deployment. Our approach employs a multi-
objective optimization strategy that simultaneously maximizes classifica-
tion accuracy and minimizes computational complexity. We introduce a
hierarchical search space that enables efficient exploration of architectural
variations while maintaining structural coherence. Experimental results
on CIFAR-10 and ImageNet datasets demonstrate that our method discov-
ers architectures that achieve state-of-the-art accuracy with significantly
reduced computational requirements compared to manually designed net-
works and existing NAS approaches. The proposed framework reduces
floating-point operations by up to 45
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Introduction

The rapid advancement of deep learning has led to increasingly complex neu-
ral network architectures that achieve remarkable performance across various
domains. However, this progress often comes at the cost of computational
complexity, making many state-of-the-art models impractical for deployment in
resource-constrained environments such as mobile devices, embedded systems,



and real-time applications. The manual design of efficient neural architectures
requires extensive domain expertise and is time-consuming, often involving nu-
merous iterations of trial and error.

Neural Architecture Search (NAS) has emerged as a promising approach to au-
tomate the design of neural networks. Early NAS methods demonstrated the
potential to discover architectures that rival or even surpass human-designed
counterparts. However, most existing NAS approaches primarily focus on max-
imizing accuracy while largely ignoring computational constraints. This limi-
tation has resulted in the discovery of architectures that, while accurate, are
computationally expensive and memory-intensive.

This paper addresses this critical gap by proposing a multi-objective NAS frame-
work that simultaneously optimizes for both accuracy and computational effi-
ciency. Our approach introduces a novel hierarchical search space that enables
efficient exploration of architectural variations while maintaining structural co-
herence. The primary contributions of this work are threefold: (1) a multi-
objective optimization formulation that balances accuracy and computational
efficiency, (2) a hierarchical search space design that facilitates efficient architec-
ture exploration, and (3) comprehensive experimental validation demonstrating
the effectiveness of our approach across multiple benchmark datasets.

Literature Review

The field of Neural Architecture Search has evolved significantly since its in-
ception. Early approaches such as reinforcement learning-based methods and
evolutionary algorithms demonstrated the feasibility of automated architecture
design but suffered from prohibitive computational costs. Zoph and Le (2017)
pioneered the use of reinforcement learning for NAS, achieving competitive re-
sults on CIFAR-10 but requiring thousands of GPU hours. Subsequent work
focused on improving search efficiency through weight sharing, one-shot models,
and differentiable architecture search.

Efficient neural architecture design has gained increasing attention in recent
years. MobileNet and ShuffleNet introduced depthwise separable convolutions
and channel shuffling operations to reduce computational complexity while main-
taining reasonable accuracy. SqueezeNet demonstrated that carefully designed
architectures could achieve AlexNet-level accuracy with 50x fewer parameters.
These manually designed efficient architectures provide valuable insights but
represent only a small fraction of possible efficient designs.

Multi-objective optimization in NAS has been explored in limited contexts. Re-
cent work by Tan et al. (2019) introduced MnasNet, which incorporates latency
as an optimization objective. However, their approach uses a weighted product
of accuracy and latency, which may not adequately capture the trade-offs be-
tween multiple objectives. Our work extends this line of research by employing
Pareto optimization to explicitly model the trade-off surface between accuracy



and computational efficiency.

The hierarchical search space design in our approach builds upon recent ad-
vances in structured neural architecture search. Previous work by Liu et al.
(2018) introduced the concept of hierarchical representation for neural architec-
tures, but their focus was primarily on improving search efficiency rather than
computational efficiency of the resulting architectures. Our hierarchical search
space is specifically designed to facilitate the discovery of computationally effi-
cient architectures while maintaining search efficiency.

Research Questions

This research addresses the following fundamental questions:

1. How can neural architecture search be effectively formulated as a multi-
objective optimization problem that simultaneously maximizes accuracy and
minimizes computational complexity?

2. What search space design principles enable efficient exploration of architec-
tures that balance accuracy and computational efficiency?

3. To what extent can automated neural architecture search discover archi-
tectures that outperform manually designed efficient networks in terms of the
accuracy-efficiency trade-off?

4. How does the proposed multi-objective NAS approach scale to large-scale
datasets and complex tasks compared to single-objective NAS methods?

Objectives

The primary objectives of this research are:

1. To develop a multi-objective neural architecture search framework that opti-
mizes for both classification accuracy and computational efficiency.

2. To design a hierarchical search space that enables efficient exploration of ar-
chitectural variations while maintaining structural coherence and computational
efficiency.

3. To implement and validate the proposed approach on standard benchmark
datasets including CIFAR-10, CIFAR-~100, and ImageNet.

4. To conduct comprehensive comparative analysis against state-of-the-art man-
ually designed efficient architectures and existing NAS methods.

5. To analyze the trade-offs between accuracy and computational efficiency in
the discovered architectures and provide insights for future efficient architecture
design.



Hypotheses to be Tested

We formulate the following hypotheses to guide our experimental evaluation:

H1: The proposed multi-objective NAS framework will discover architectures
that achieve better accuracy-efficiency trade-offs compared to single-objective
NAS methods that optimize only for accuracy.

H2: The hierarchical search space design will enable more efficient exploration
of the architecture space, leading to the discovery of novel efficient architectural
patterns not present in manually designed networks.

H3: The discovered architectures will demonstrate consistent performance im-
provements across different datasets and tasks, indicating the generalizability
of the approach.

H4: The multi-objective optimization approach will produce a diverse set of
architectures along the Pareto front, providing multiple options for different
computational budget constraints.

Approach/Methodology

Multi-Objective Optimization Formulation

We formulate neural architecture search as a multi-objective optimization prob-
lem with two primary objectives: maximizing classification accuracy and min-
imizing computational complexity. The optimization problem can be formally
stated as:

max [f (), —fo(a)] (1)

acA

where « represents a neural architecture from the search space A, f;(«) denotes
the validation accuracy, and f,(«) represents the computational complexity
measured in floating-point operations (FLOPs).

We employ Pareto optimization to identify architectures that are non-dominated,
meaning no other architecture exists that is strictly better in both objectives.
The Pareto front represents the set of optimal trade-offs between accuracy and
computational efficiency.

Hierarchical Search Space Design

Our hierarchical search space is organized at three levels: macro-architecture,
block-level, and operation-level. The macro-architecture defines the overall net-
work structure, including the number of stages and resolution changes. Each
stage consists of multiple blocks, and each block contains specific operations.



At the operation level, we consider a diverse set of efficient operations includ-
ing standard convolutions, depthwise separable convolutions, inverted residuals,
squeeze-and-excitation blocks, and skip connections. The search space is de-
signed to ensure that all possible architectures maintain reasonable structural
properties and computational efficiency.

Search Algorithm

We employ an evolutionary algorithm with non-dominated sorting and crowding
distance for population management. The algorithm maintains a population of
architectures and iteratively improves them through selection, crossover, and
mutation operations. The fitness of each architecture is evaluated based on its
position in the objective space.

To accelerate the search process, we employ weight sharing and one-shot model
evaluation. A supernet encompassing all possible operations is trained once,
and individual architectures are evaluated by inheriting weights from the su-
pernet. This approach reduces the evaluation time from hours to seconds per
architecture.

Results

We evaluated our proposed approach on three benchmark datasets: CIFAR-
10, CIFAR-100, and ImageNet. The search was conducted on CIFAR-10, and
the discovered architectures were transferred to the other datasets to assess
generalizability.

Table 1: Comparison of discovered architectures with state-of-the-
art methods on CIFAR-10

Method Accuracy (%) FLOPs (M) Parameters (M) Search Cost (GPU days)
ResNet-110 (manual) 93.57 253.0 1.7 -
DenseNet-BC (manual) 94.81 283.0 25.6 -
NASNet-A 97.35 564.0 3.3 2000
AmoebaNet-B 97.45 555.0 2.8 3150
ENAS 97.11 626.0 4.6 0.5
Our Method (Arch-A) 97.28 312.4 2.1 1.2
Our Method (Arch-B) 96.89 198.7 1.4 1.2
Our Method (Arch-C) 96.45 142.3 1.1 1.2

The results demonstrate that our multi-objective NAS approach discovers archi-
tectures that achieve competitive accuracy with significantly reduced computa-
tional requirements. Architecture A achieves 97.28



On ImageNet, our discovered architectures maintain their efficiency advantages.
Architecture A achieves 75.8

The search efficiency of our approach is also notable, requiring only 1.2 GPU
days compared to thousands of GPU days for early NAS methods. This im-
provement makes neural architecture search more accessible and practical for
real-world applications.

Discussion

The experimental results strongly support our hypotheses and demonstrate the
effectiveness of the proposed multi-objective NAS approach. The discovered ar-
chitectures consistently achieve better accuracy-efficiency trade-offs compared
to both manually designed networks and architectures discovered by single-
objective NAS methods.

The hierarchical search space design proved crucial for enabling efficient explo-
ration. By constraining the search space to structurally coherent architectures,
we avoided the discovery of fragmented or unstable architectures that some-
times emerge from unconstrained search spaces. The hierarchical organization
also facilitated the transfer of discovered architectures across datasets, as the
macro-architecture patterns proved to be generally applicable.

Analysis of the discovered architectures revealed several interesting patterns. All
high-performing architectures incorporated depthwise separable convolutions as
their primary building blocks, confirming the effectiveness of this operation for
efficiency. However, the specific arrangement and combination of operations
varied significantly across the Pareto front, suggesting multiple viable paths to
efficiency.

The multi-objective approach successfully produced a diverse set of architectures
along the Pareto front, providing practitioners with multiple options depending
on their specific accuracy and efficiency requirements. This flexibility is par-
ticularly valuable for real-world applications where computational budgets may
vary.

One limitation of our current approach is the focus on FLOPs as the primary
efficiency metric. While FLOPs provide a reasonable proxy for computational
cost, they may not perfectly correlate with actual inference time on specific
hardware. Future work could incorporate hardware-specific metrics such as
latency or energy consumption directly into the optimization objectives.

Conclusions
This paper presented a novel multi-objective neural architecture search frame-

work for discovering efficient convolutional networks. By simultaneously op-
timizing for accuracy and computational efficiency, our approach addresses a



critical limitation of existing NAS methods that primarily focus on accuracy
alone.

The key contributions of this work include: (1) a multi-objective optimization
formulation that explicitly models the trade-off between accuracy and compu-
tational efficiency, (2) a hierarchical search space design that enables efficient
exploration while maintaining structural coherence, and (3) comprehensive ex-
perimental validation demonstrating superior accuracy-efficiency trade-offs com-
pared to state-of-the-art methods.

The discovered architectures achieve competitive accuracy with significantly
reduced computational requirements, making them particularly suitable for
resource-constrained environments. The search efficiency of our approach also
represents a substantial improvement over early NAS methods, making auto-
mated architecture design more practical and accessible.

Future work will focus on extending the multi-objective approach to incorporate
additional objectives such as robustness, interpretability, and hardware-specific
performance metrics. We also plan to explore the application of our framework
to other network types beyond convolutional networks, including transformers
and recurrent networks.
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