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Abstract

This paper presents a novel neural architecture search (NAS) frame-
work that optimizes convolutional neural networks for both accuracy and
computational efficiency. Traditional NAS methods often focus solely
on accuracy metrics, leading to computationally expensive models that
are impractical for resource-constrained environments. Our approach em-
ploys a multi-objective optimization strategy that simultaneously consid-
ers classification accuracy, model size, and inference speed. We introduce
a modified evolutionary algorithm with specialized mutation and crossover
operations tailored for neural architecture exploration. Experimental re-
sults on CIFAR-10 and ImageNet datasets demonstrate that our method
discovers architectures that achieve competitive accuracy while reducing
computational requirements by 35-60
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Introduction

The rapid advancement of deep learning has revolutionized numerous fields,
from computer vision to natural language processing. However, the increas-
ing complexity of neural network architectures poses significant challenges for
practical deployment, particularly in resource-constrained environments such
as mobile devices, embedded systems, and edge computing platforms. Tradi-
tional approaches to neural network design rely heavily on human expertise and



extensive trial-and-error experimentation, which is both time-consuming and
suboptimal.

Neural Architecture Search (NAS) has emerged as a promising alternative, au-
tomating the process of discovering optimal network architectures. While early
NAS methods demonstrated impressive results, they often prioritized accuracy
at the expense of computational efficiency, resulting in models that are im-
practical for real-world applications. This limitation highlights the need for
multi-objective optimization approaches that balance competing performance
metrics.

This paper introduces a novel NAS framework that addresses these challenges
through a comprehensive multi-objective optimization strategy. Our approach
simultaneously optimizes for classification accuracy, model complexity, and in-
ference speed, enabling the discovery of architectures that are both accurate
and computationally efficient. By incorporating specialized evolutionary oper-
ators and a sophisticated fitness evaluation mechanism, our method navigates
the complex search space of neural architectures more effectively than existing
approaches.

The contributions of this work are threefold: First, we propose a modified evo-
lutionary algorithm specifically designed for neural architecture search. Second,
we introduce a multi-objective fitness function that balances accuracy with com-
putational constraints. Third, we demonstrate through extensive experiments
that our approach discovers architectures that significantly outperform both
hand-designed networks and single-objective NAS methods in terms of compu-
tational efficiency while maintaining competitive accuracy.

Literature Review

The field of neural architecture search has evolved rapidly since its inception.
Early work by Zoph and Le (2016) introduced reinforcement learning-based
approaches for NAS, demonstrating that automated methods could discover ar-
chitectures competitive with human-designed networks. However, these meth-
ods required enormous computational resources, making them impractical for
widespread adoption.

Subsequent research focused on improving the efficiency of NAS through var-
ious techniques. ENAS (Pham et al., 2018) introduced weight sharing across
architectures to reduce computational requirements. DARTS (Liu et al., 2018)
proposed a differentiable architecture search method that significantly acceler-
ated the search process. While these approaches improved efficiency, they still
primarily focused on accuracy as the primary optimization objective.

The importance of multi-objective optimization in NAS has gained increasing
recognition. Tan et al. (2019) introduced MnasNet, which incorporated latency
as an optimization objective using reinforcement learning. Similarly, Cai et al.



(2018) proposed ProxylessNAS, which directly optimized for hardware-specific
metrics. These works demonstrated the potential of multi-objective approaches
but were limited in their ability to handle multiple competing objectives simul-
taneously.

Evolutionary algorithms have shown particular promise for multi-objective NAS.
Real et al. (2019) demonstrated that evolutionary approaches could discover
high-performing architectures, while Elsken et al. (2018) provided a compre-
hensive survey of evolutionary NAS methods. However, existing evolutionary
approaches often struggle with the high-dimensional search space of neural ar-
chitectures and the computational cost of fitness evaluation.

Our work builds upon these foundations by introducing a specialized evolution-
ary algorithm that incorporates domain knowledge about neural architecture
design. Unlike previous approaches, our method explicitly models the trade-
offs between accuracy, model size, and inference speed, enabling more effective
navigation of the Pareto front in multi-objective optimization.

Research Questions

This research addresses the following fundamental questions:

1. How can neural architecture search be effectively formulated as a multi-
objective optimization problem that simultaneously considers accuracy, compu-
tational efficiency, and model complexity?

2. What evolutionary operators and search strategies are most effective for
exploring the high-dimensional space of neural architectures while balancing
competing objectives?

3. To what extent can automated architecture search discover networks that
outperform both human-designed architectures and single-objective NAS ap-
proaches in terms of the accuracy-efficiency trade-off?

4. How do the discovered architectures generalize across different datasets and
computational constraints?

Objectives

The primary objectives of this research are:

1. To develop a multi-objective neural architecture search framework that opti-
mizes for classification accuracy, model size, and inference speed simultaneously.

2. To design and implement specialized evolutionary operators for neural ar-
chitecture exploration, including mutation and crossover operations tailored to
convolutional network components.



3. To establish a comprehensive evaluation methodology for assessing the per-
formance of discovered architectures across multiple metrics and datasets.

4. To validate the proposed approach through extensive experiments on stan-
dard benchmarks and compare its performance against state-of-the-art methods.

5. To analyze the characteristics of discovered architectures and derive insights
about efficient neural network design principles.

Hypotheses to be Tested

Based on our research questions and objectives, we formulate the following hy-
potheses:

H1: Multi-objective neural architecture search will discover architectures that
achieve better accuracy-efficiency trade-offs compared to single-objective ap-
proaches.

H2: The proposed specialized evolutionary operators will enable more effective
exploration of the neural architecture search space compared to standard genetic
algorithms.

H3: Architectures discovered through our method will demonstrate consistent
performance advantages across different datasets and computational constraints.

H4: The multi-objective optimization approach will lead to architectures with
distinctive structural patterns that differ systematically from those designed
through human intuition or single-objective optimization.

Approach/Methodology

Search Space Design

We define a flexible search space that encompasses various convolutional oper-
ations, including standard convolutions, depthwise separable convolutions, di-
lated convolutions, and various activation functions. The search space also
includes skip connections, branching patterns, and attention mechanisms. Each
architecture is represented as a directed acyclic graph where nodes represent
feature maps and edges represent operations.

Multi-Objective Optimization Formulation

Our optimization problem is formulated as:

min [—A(6), 5(9), T(0)] (1)



where 0 represents an architecture in the search space ©, A(#) denotes classifi-
cation accuracy, S(#) represents model size (number of parameters), and T(6)
indicates inference time. We employ the NSGA-II algorithm for multi-objective
optimization due to its effectiveness in handling non-dominated sorting and
crowding distance computation.

Evolutionary Algorithm Design
Our modified evolutionary algorithm incorporates several key innovations:

1. Specialized Mutation Operators: We design mutation operators that
specifically target different architectural components, including layer type
changes, filter size adjustments, and connectivity modifications.

2. Knowledge-Guided Crossover: The crossover operation combines archi-
tectural components from parent networks while preserving functional modules
that contribute to performance.

3. Adaptive Search Strategy: The algorithm dynamically adjusts explo-
ration and exploitation based on population diversity and convergence metrics.

Fitness Evaluation

Each candidate architecture undergoes training on a subset of the target dataset
for a fixed number of epochs. The fitness evaluation considers:

where «, (8, and v are weighting coefficients that balance the importance of
accuracy, model size, and inference time, respectively. S,,,, and T, . represent
maximum acceptable values for model size and inference time.

Results

We evaluated our proposed method on two standard benchmarks: CIFAR-10
and ImageNet. The experiments were conducted using a cluster of NVIDIA
Tesla V100 GPUs, with each architecture search requiring approximately 200
GPU-days.

On CIFAR-10, our method discovered architectures that achieved 94.8

On ImageNet, the results were equally promising. Our best discovered architec-
ture achieved 75.3



Table 1: Performance Comparison on CIFAR-10 Dataset

Architecture Accuracy (%) Parameters (M) Inference Time (ms) Search Cost (GPU-days)
ResNet-56 93.0 0.85 12.3 -
DenseNet-BC 94.8 0.80 15.1 -
NASNet-A 97.4 3.3 23.5 2000
ENAS 97.1 4.6 19.8 0.5
Our Method (Pareto-1) 94.8 1.2 6.8 200
Our Method (Pareto-2) 96.2 2.1 8.9 200
Our Method (Pareto-3) 97.0 3.8 12.3 200

The table above demonstrates the effectiveness of our multi-objective approach.
While our method may not achieve the absolute highest accuracy of some single-
objective NAS approaches, it discovers architectures that provide superior trade-
offs between accuracy and computational efficiency. The Pareto-optimal solu-
tions cover a range of operating points, allowing practitioners to select architec-
tures based on specific deployment constraints.

Discussion

The results validate our primary hypothesis that multi-objective neural archi-
tecture search can discover networks with superior accuracy-efficiency trade-offs.
The discovered architectures exhibit several interesting characteristics that dif-
ferentiate them from both human-designed networks and single-objective NAS
results.

First, we observed a preference for heterogeneous layer compositions, with dif-
ferent parts of the network employing different types of convolutional operations
optimized for their specific roles. This contrasts with the homogeneous struc-
tures often found in hand-designed networks.

Second, the architectures frequently incorporated efficient operations like depth-
wise separable convolutions in early layers where spatial information is more
important, while using standard convolutions in later layers where channel in-
teractions become more critical. This pattern suggests that the search process
learned to allocate computational resources strategically.

Third, we found that skip connections were used more selectively than in ar-
chitectures like ResNet, appearing primarily where they provided significant
performance benefits rather than as a universal design pattern.

The computational cost of our approach, while substantial, represents a sig-
nificant improvement over early NAS methods and provides good value given
the quality of discovered architectures. The ability to discover multiple Pareto-
optimal solutions in a single search run is particularly valuable for practical
applications where deployment constraints may vary.



Conclusions

This paper has presented a novel multi-objective neural architecture search
framework that effectively balances classification accuracy with computational
efficiency. Our approach demonstrates that explicitly considering multiple com-
peting objectives during architecture search leads to networks that are better
suited for practical deployment in resource-constrained environments.

The key contributions of this work include: (1) a comprehensive formulation
of NAS as a multi-objective optimization problem, (2) specialized evolutionary
operators tailored for neural architecture exploration, and (3) extensive experi-
mental validation demonstrating significant improvements in computational ef-
ficiency without compromising accuracy.

Future work will focus on reducing the computational cost of the search process
through more efficient fitness evaluation strategies and incorporating additional
objectives such as energy consumption and memory bandwidth requirements.
We also plan to extend the approach to other domains beyond computer vision,
including natural language processing and speech recognition.
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