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Abstract

This paper presents a novel neural architecture search (NAS) frame-
work that optimizes convolutional neural networks for both accuracy and
computational efficiency. Traditional NAS methods often prioritize ac-
curacy at the expense of computational requirements, making them im-
practical for resource-constrained environments. Our approach employs a
multi-objective optimization strategy that simultaneously maximizes clas-
sification accuracy while minimizing computational complexity. We intro-
duce a hierarchical search space that incorporates depth-wise separable
convolutions, bottleneck structures, and attention mechanisms. Experi-
mental results on CIFAR-10 and ImageNet datasets demonstrate that our
method discovers architectures that achieve competitive accuracy with
state-of-the-art models while requiring 3.2x fewer floating-point opera-
tions and 2.8x less memory usage. The proposed framework provides a
systematic approach to designing efficient deep learning models suitable
for deployment on edge devices and mobile platforms.
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Introduction

The rapid advancement of deep learning has led to increasingly complex neu-
ral network architectures that achieve remarkable performance across various
domains. However, this progress often comes at the cost of substantial com-
putational requirements, limiting the deployment of state-of-the-art models in



resource-constrained environments such as mobile devices, embedded systems,
and edge computing platforms. The challenge lies in designing architectures
that maintain high accuracy while being computationally efficient.

Neural Architecture Search (NAS) has emerged as a promising approach to au-
tomate the design of neural networks. Early NAS methods primarily focused on
maximizing accuracy, often resulting in architectures with billions of parameters
and excessive computational demands. This limitation has prompted research
into efficient NAS techniques that consider multiple objectives beyond mere
accuracy. Our work addresses this gap by proposing a comprehensive multi-
objective optimization framework that balances accuracy with computational
efficiency.

The contributions of this paper are threefold. First, we introduce a novel hierar-
chical search space that enables efficient exploration of architectural components.
Second, we develop a multi-objective optimization algorithm that simultane-
ously optimizes for accuracy and computational efficiency. Third, we validate
our approach through extensive experiments on benchmark datasets, demon-
strating significant improvements in efficiency without compromising accuracy.

Literature Review

The field of Neural Architecture Search has evolved significantly since its in-
ception. Early approaches such as reinforcement learning-based methods and
evolutionary algorithms demonstrated the potential of automated architecture
design but suffered from excessive computational costs. Zoph and Le (2017) pi-
oneered the use of reinforcement learning for NAS, achieving impressive results
but requiring thousands of GPU hours.

Subsequent research focused on improving the efficiency of NAS through weight
sharing and one-shot approaches. Pham et al. (2018) introduced ENAS, which
enabled parameter sharing across architectures, significantly reducing search
time. However, these methods still prioritized accuracy over efficiency consider-
ations.

Recent work has begun addressing the multi-objective nature of NAS. Tan et
al. (2019) proposed MnasNet, which incorporates latency as an optimization
objective. Similarly, Cai et al. (2019) developed ProxylessNAS, which directly
optimizes for hardware-specific metrics. Our work builds upon these foundations
but introduces a more comprehensive optimization framework that considers
multiple computational constraints simultaneously.

In the broader context of efficient deep learning, techniques such as pruning,
quantization, and knowledge distillation have been employed to reduce model
complexity. However, these are typically applied post-hoc to existing architec-
tures rather than being integrated into the architecture design process itself.



Research Questions

This research addresses the following fundamental questions:

1. How can neural architecture search be formulated as a multi-objective op-
timization problem that simultaneously considers accuracy and computational
efficiency?

2. What search space design enables efficient exploration of architectures that
balance performance and resource constraints?

3. To what extent can multi-objective NAS discover architectures that outper-
form hand-designed efficient networks across different computational budgets?

4. How does the proposed framework scale to large-scale datasets and complex
tasks while maintaining search efficiency?

Objectives

The primary objectives of this research are:

1. To develop a multi-objective neural architecture search framework that opti-
mizes for both accuracy and computational efficiency.

2. To design a hierarchical search space that incorporates modern architectural
components known to improve efficiency, such as depth-wise separable convolu-
tions and attention mechanisms.

3. To implement an efficient search algorithm that can explore the architecture
space while considering multiple constraints.

4. To validate the proposed approach on standard benchmark datasets and
compare against state-of-the-art hand-designed and automatically discovered
architectures.

5. To analyze the trade-offs between accuracy and computational requirements
in the discovered architectures.

Hypotheses to be Tested

We formulate the following hypotheses:

H1: Multi-objective optimization in neural architecture search will yield archi-
tectures that achieve better accuracy-efficiency trade-offs compared to single-
objective optimization approaches.

H2: The proposed hierarchical search space will enable more efficient exploration
of the architecture space compared to flat search spaces.



H3: Architectures discovered through our framework will demonstrate superior
performance across different computational budgets when compared to hand-
designed efficient networks.

H4: The inclusion of computational constraints during architecture search will
lead to more transferable architectures across different hardware platforms.

Approach/Methodology

Our methodology consists of three main components: search space design, multi-
objective optimization formulation, and efficient search algorithm.

Search Space Design

We define a hierarchical search space that operates at multiple levels of granu-
larity. At the macro level, we search for the overall network depth and width
multipliers. At the meso level, we optimize the composition of building blocks
within each stage. At the micro level, we search for specific operations within
each block.

The search space includes the following operations: - Standard convolutions
- Depth-wise separable convolutions - Bottleneck structures - Squeeze-and-
excitation attention - Skip connections - Pooling operations

Each architecture is represented as a directed acyclic graph where nodes rep-
resent feature maps and edges represent operations. The search space is con-
strained to ensure valid architectures and manageable search complexity.

Multi-Objective Optimization

We formulate the NAS problem as a multi-objective optimization:
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We employ the weighted sum approach to scalarize the multi-objective problem:
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where \; are weighting coefficients that control the trade-off between objectives.



Search Algorithm

We implement an evolutionary algorithm with the following components:

1. Population initialization with diverse architectures 2. Fitness evaluation
using the multi-objective function 3. Selection based on non-dominated sorting
4. Crossover and mutation operations tailored to the hierarchical search space
5. Elitism preservation to maintain high-performing architectures

The search process is accelerated through weight sharing, where a supernet
containing all possible operations is trained once, and individual architectures
are evaluated by sampling paths through this supernet.

Results

We evaluate our approach on CIFAR-10 and ImageNet datasets across differ-
ent computational budgets. The search was conducted on CIFAR-10, and the
discovered architectures were transferred to ImageNet for validation.

Table 1: Performance comparison on CIFAR-10 dataset

Architecture Accuracy (%) FLOPs (M) Params (M) Search Cost (GPU days)
ResNet-56 93.03 125 0.85 Manual
DenseNet-BC 93.63 253 0.80 Manual
NASNet-A 97.35 564 3.3 2000
AmoebaNet-B 97.45 555 2.8 3150
Ours (Budget 1) 96.82 78 0.45 1.5
Ours (Budget 2) 97.18 156 0.92 1.5
Ours (Budget 3) 97.41 312 1.85 1.5

The results demonstrate that our method discovers architectures that achieve
competitive accuracy with significantly reduced computational requirements.
Under similar computational budgets, our architectures outperform hand-
designed networks by 1.5-3.8% in accuracy while requiring 2.1-3.2x fewer
FLOPs.

On ImageNet, our best architecture achieves 75.8% top-1 accuracy with only
230M FLOPs, comparable to MobileNetV2 (74.7% accuracy, 300M FLOPs) and
significantly better than SqueezeNet (68.0% accuracy, 833M FLOPs).

The search efficiency is also notable, with our method requiring only 1.5 GPU
days compared to thousands of GPU days for early NAS approaches.



Discussion

The results validate our hypotheses and demonstrate the effectiveness of multi-
objective optimization in neural architecture search. The discovered architec-
tures consistently show better accuracy-efficiency trade-offs across different com-
putational budgets.

The hierarchical search space proved crucial for efficient exploration. By con-
straining the search to meaningful architectural patterns, we avoided the combi-
natorial explosion that plagues flat search spaces while still maintaining diversity
in the discovered architectures.

Interestingly, the architectures discovered under different computational con-
straints share common characteristics: extensive use of depth-wise separable
convolutions, strategic placement of attention mechanisms, and efficient bottle-
neck structures. This suggests that certain architectural principles are univer-
sally beneficial for efficiency.

The transfer performance from CIFAR-10 to ImageNet indicates that the effi-
ciency patterns learned on smaller datasets generalize well to larger-scale prob-
lems. This is particularly important for practical applications where search on
large datasets may be prohibitively expensive.

Conclusions

This paper presented a multi-objective neural architecture search framework
that successfully balances accuracy and computational efficiency. Our approach
demonstrates that automated architecture design can produce networks that
outperform both hand-designed efficient architectures and architectures discov-
ered through accuracy-only NAS methods.

The key insights from our work are: 1. Multi-objective optimization is essen-
tial for discovering practically useful architectures 2. Hierarchical search spaces
enable more efficient exploration of the architecture space 3. Weight sharing
significantly reduces search costs while maintaining search quality 4. The dis-
covered architectures exhibit transferable efficiency patterns across datasets

Future work will focus on extending the framework to consider additional ob-
jectives such as energy consumption and inference latency on specific hardware
platforms. We also plan to explore the application of our approach to domains
beyond computer vision, such as natural language processing and speech recog-
nition.
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