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Abstract

Autism Spectrum Disorder (ASD) is characterized by complex behavioral pat-
terns that manifest across both spatial and temporal dimensions, presenting sig-
nificant challenges for automated recognition systems. This research introduces a
novel hybrid deep learning framework that synergistically combines Convolutional
Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks to cap-
ture both spatial features from visual data and temporal dynamics from behavioral
sequences. Our architecture processes video data of social interactions through
parallel CNN streams for spatial feature extraction from individual frames, cou-
pled with LSTM networks that model temporal dependencies across behavioral
sequences. The framework incorporates multi-scale attention mechanisms, adap-
tive fusion techniques, and hierarchical feature aggregation to effectively integrate

spatial and temporal information. We evaluated our approach on a comprehensive



dataset of 2,300 video sequences from 850 children aged 24-60 months, including
both structured assessment sessions and naturalistic interactions. The proposed hy-
brid model achieved 93.7% recognition accuracy, significantly outperforming stan-
dalone CNN (86.2%) and LSTM (82.4%) approaches. Feature importance analysis
revealed that the integration of gaze pattern spatial features with temporal dy-
namics of social responsiveness provided the most discriminative power for autism
behavior recognition. This research demonstrates that the synergistic combination
of spatial and temporal modeling enables more accurate and clinically meaningful
autism behavior analysis, providing a robust foundation for computer-aided diag-

nostic systems and intervention monitoring tools.
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1 Introduction

Autism Spectrum Disorder represents a complex neurodevelopmental condition charac-
terized by distinctive behavioral patterns that unfold across both spatial and temporal
domains. The recognition and analysis of these behaviors present unique computational
challenges, as autism manifestations involve intricate spatial configurations in social in-
teractions, such as eye gaze patterns, facial expressions, and body postures, while si-
multaneously exhibiting characteristic temporal dynamics including repetitive behavior
sequences, response latencies, and social interaction rhythms. Traditional automated
approaches to autism behavior analysis have typically focused on either spatial features
extracted from individual frames or temporal patterns analyzed in isolation, failing to cap-
ture the essential spatiotemporal nature of autistic behaviors. This limitation represents
a significant gap in computational methods for autism assessment, as the integration of
spatial and temporal information is crucial for accurate behavior recognition and clinical
interpretation.

The emergence of deep learning has revolutionized computer vision and sequence
analysis, with Convolutional Neural Networks demonstrating remarkable capabilities in
spatial feature extraction and Long Short-Term Memory networks excelling in tempo-
ral pattern recognition. However, the application of these technologies to autism be-
havior analysis has largely remained within separate methodological silos. CNN-based
approaches have proven effective for analyzing static behavioral features such as facial
expressions, gaze direction, and body posture from individual video frames, but they
inherently miss the crucial temporal evolution of these behaviors. Conversely, LSTM-
based methods can effectively model behavioral sequences and temporal patterns but

may overlook important spatial relationships and fine-grained visual features that are



essential for accurate autism behavior recognition. This disciplinary divide has limited
the development of comprehensive computational frameworks that can fully capture the
complex nature of autism-related behaviors.

This research addresses this fundamental limitation by introducing a novel hybrid
deep learning framework that seamlessly integrates CNN and LSTM architectures for
comprehensive autism behavior recognition. Our approach is grounded in the under-
standing that autism behaviors are inherently spatiotemporal phenomena, where both
the spatial configuration of social cues and their temporal evolution contribute to accu-
rate recognition and interpretation. The hybrid framework processes video data through
parallel streams that extract spatial features using advanced CNN architectures while
simultaneously modeling temporal dependencies through bidirectional LSTM networks.
The integration of these complementary capabilities enables the model to recognize com-
plex behavioral patterns such as the gradual development of joint attention, the rhythmic
patterns of stereotypical movements, and the dynamic progression of social engagement.

The clinical implications of effective spatiotemporal behavior analysis are substantial.
Accurate recognition of autism behaviors from naturalistic video data could facilitate ear-
lier and more objective assessment, enable continuous monitoring of intervention progress,
and provide detailed behavioral analytics that support personalized treatment planning.
Furthermore, by capturing both spatial and temporal dimensions of behavior, the pro-
posed framework can identify subtle behavioral signatures that may be missed by human
observers or conventional computational approaches. This comprehensive analysis capa-
bility is particularly valuable for understanding the heterogeneous presentation of autism
across different individuals and contexts.

Our hybrid framework incorporates several innovative components specifically de-
signed for autism behavior analysis. These include multi-scale spatial feature extraction
to capture behaviors at different granularities, attention mechanisms that dynamically
weight important spatial and temporal features, and adaptive fusion techniques that op-
timally combine spatial and temporal information based on their discriminative power for
specific behavioral classes. The architecture is designed to be computationally efficient
while maintaining high accuracy, making it suitable for potential deployment in clinical
and educational settings where computational resources may be limited.

This paper presents a comprehensive evaluation of the proposed hybrid framework
on a large and diverse dataset of autism behaviors, comparing its performance against
state-of-the-art standalone approaches and demonstrating its superior capability in cap-
turing the spatiotemporal nature of autism-related behaviors. The research contributes
not only a novel computational architecture but also important insights into the relative
contributions of spatial and temporal features for autism behavior recognition, advanc-
ing both methodological development and clinical understanding of autism behavioral

phenotypes.



2 Literature Review

The application of computer vision and deep learning to autism behavior analysis has
evolved significantly over the past decade, with researchers exploring various approaches
to capture the complex behavioral manifestations of Autism Spectrum Disorder. Early
work in this domain primarily focused on manual feature engineering and traditional
machine learning methods. For instance, Jones and Klin (2013) conducted foundational
research on eye-tracking patterns in autism, establishing the importance of gaze dynamics
but relying on manually coded behavioral features. Similarly, Dawson et al. (2012)
explored early behavioral markers using structured assessments, highlighting the temporal
aspects of social responsiveness but with limited computational automation.

The advent of deep learning brought substantial advances in automated behavior
analysis. Convolutional Neural Networks have been particularly influential in extracting
spatial features from visual data. Li et al. (2017) applied CNNs to analyze facial expres-
sions in children with autism, demonstrating improved accuracy in emotion recognition
but focusing exclusively on spatial features from individual frames. Their work high-
lighted the importance of fine-grained visual features but did not address t he temporal
evolution of emotional expressions. Similarly, Rahman et al. (2018) used CNN architec-
tures for body pose estimation in autism, providing valuable insights into atypical motor
patterns but treating each frame independently, thus missing the sequential nature of
motor behaviors.

Long Short-Term Memory networks and other recurrent architectures have been em-
ployed to model temporal dynamics in autism behaviors. Dutta et al. (2019) applied
LSTMs to analyze social interaction sequences, capturing temporal patterns in conver-
sation dynamics and turn-taking behaviors. Their approach demonstrated the value of
sequential modeling but relied on pre-extracted features rather than learning temporal
patterns directly from raw data.

The integration of spatial and temporal modeling has gained increasing attention in
recent computer vision research, though applications to autism behavior analysis remain
limited. The two-stream architecture proposed by Simonyan and Zisserman (2014) for
action recognition inspired similar approaches in behavioral analysis, but these typically
process spatial and temporal streams separately without deep integration. Carreira and
Zisserman (2017) introduced the Inflated 3D ConvNet (I3D) for video analysis, which
extends 2D convolutions to 3D to capture spatiotemporal features simultaneously. While
powerful, this approach can be computationally intensive and may not optimally balance

spatial and temporal feature importance for specific behavioral domains like autism.

Several researchers have explored hybrid approaches for behavior analysis in related



domains. Nguyen et al. (2019) combined CNNs and LSTMs for human activity recogni-
tion, demonstrating superior performance compared to single-modality approaches. Their
work provided important methodological insights but focused on general activities rather
than the subtle behavioral patterns characteristic of autism. How-ever, the application of
these approaches to autism-specific behaviors requires significant adaptation to address
the unique characteristics of autistic social communication and interaction patterns.

Attention mechanisms have emerged as crucial components in modern deep learning
architectures, enabling models to focus on relevant spatial regions and temporal segments.
Vaswani et al. (2017) introduced the transformer architecture with self-attention, which
has been adapted for various sequence modeling tasks. In autism behavior analysis,
attention mechanisms could help identify clinically relevant behavioral moments, though
their application in hybrid CNN-LSTM frameworks remains underexplored. Wang et
al. (2018) proposed non-local neural networks for capturing long-range dependencies in
videos, which could be particularly relevant for modeling extended social interactions in
autism.

The current literature reveals several significant gaps that our research addresses.
First, there is limited work on deeply integrated CNN-LSTM architectures specifically
designed for autism behavior recognition, with most existing approaches focusing on ei-
ther spatial or temporal analysis in isolation. Second, the optimal strategies for fusing
spatial and temporal features in autism behavior analysis remain poorly understood,
with little research on adaptive fusion mechanisms that can weight spatial and temporal
contributions based on their discriminative power for specific behaviors. Third, there is
insufficient exploration of multi-scale analysis approaches that can capture autism behav-
iors at different spatial and temporal granularities, from fine-grained facial expressions to
broader interaction patterns. Finally, the clinical interpretability of hybrid deep learning
models for autism behavior analysis requires further investigation to ensure that compu-

tational insights align with clinical understanding and support practical implementation.

3 Research Questions

This research is guided by several fundamental questions that address both technical and
clinical aspects of hybrid deep learning for autism behavior recognition. The primary re-
search question investigates whether a carefully designed hybrid CNN-LSTM framework
can achieve superior performance in autism behavior recognition compared to standalone
spatial or temporal approaches, and how this performance advantage varies across dif-

ferent types of autism-related behaviors. This question encompasses not only overall



recognition accuracy but also the specific behavioral domains where spatial-temporal
integration provides the greatest benefits, such as social engagement patterns, commu-
nicative gestures, or repetitive behaviors.

A secondary line of inquiry examines the optimal architectural strategies for integrat-
ing spatial and temporal features in autism behavior analysis. This involves investigating
different fusion mechanisms, including early fusion of raw data, intermediate fusion of fea-
ture representations, and late fusion of model predictions, to determine which approach
most effectively captures the spatiotemporal nature of autism behaviors. Additionally,
we explore how attention mechanisms can be incorporated to dynamically weight the im-
portance of spatial features and temporal sequences based on their relevance for specific
behavioral recognition tasks.

Further questions explore the multi-scale nature of autism behaviors and how hy-
brid architectures can effectively capture behaviors at different spatial and temporal
resolutions. We investigate whether certain behaviors are better recognized through
fine-grained spatial analysis while others require broader temporal context, and how
the framework can adaptively balance these different analytical perspectives. This in-
cludes examining the interaction between spatial scale (from individual facial features to
full-body movements) and temporal scale (from brief moments to extended interaction
sequences) in behavior recognition accuracy.

Another important question concerns the generalization capabilities of hybrid mod-
els across different demographic groups, recording conditions, and behavioral contexts.
We investigate whether the integration of spatial and temporal features enhances model
robustness to variations in video quality, lighting conditions, camera angles, and indi-
vidual differences in behavioral presentation. This includes examining potential biases
in model performance across age groups, sex categories, and cultural backgrounds, and
determining whether spatial-temporal integration helps mitigate these biases.

Finally, we consider the clinical interpretability and utility of hybrid deep learning
models for autism behavior analysis. This involves investigating whether the integrated
spatial and temporal features learned by the model align with clinical understanding
of autism behaviors, and whether the model’s recognition patterns can provide insights
that support clinical assessment and intervention planning. Understanding how compu-
tational behavior recognition translates to clinically meaningful information is essential

for bridging the gap between technical innovation and practical healthcare applications.

4 Objectives

The primary objective of this research is to design, implement, and comprehensively eval-
uate a novel hybrid deep learning framework that effectively integrates CNN and LSTM

architectures for autism behavior recognition. This encompasses the development of so-



phisticated architectural components for spatial feature extraction, temporal sequence
modeling, and multi-modal feature fusion, specifically optimized for the unique charac-
teristics of autism-related behaviors. The framework aims to capture both the spatial
configuration of social cues and their temporal evolution, enabling comprehensive analysis
of complex behavioral patterns that are characteristic of Autism Spectrum Disorder.

A crucial objective involves the creation and curation of a large-scale, well-annotated
dataset of autism behaviors suitable for training and evaluating hybrid deep learning
models. This includes collecting video data across diverse behavioral contexts, developing
detailed annotation protocols based on established clinical frameworks, and ensuring
representation of the heterogeneous presentations of autism across different age groups,
severity levels, and demographic backgrounds. The dataset construction emphasizes both
spatial diversity (varying camera angles, distances, and settings) and temporal diversity
(different interaction durations and behavioral sequence lengths) to support robust model
development.

Another key objective focuses on the development of advanced spatial feature ex-
traction capabilities using convolutional neural networks specifically adapted for autism
behavior analysis. This includes designing multi-scale CNN architectures that can cap-
ture behaviors at different spatial resolutions, from fine-grained facial features to full-body
movement patterns. The spatial analysis component incorporates attention mechanisms
to identify clinically relevant regions of interest and adaptive pooling strategies to handle
variations in behavioral scale and perspective.

We also aim to develop sophisticated temporal modeling approaches using LSTM net-
works and related sequence processing architectures. This involves designing bidirectional
LSTM structures that can capture both forward and backward temporal dependencies in
behavioral sequences, implementing hierarchical temporal modeling to address behaviors
at different time scales, and incorporating temporal attention mechanisms to focus on be-
haviorally significant moments. The temporal analysis component is specifically designed
to model the characteristic rhythms, latencies, and patterns of autism-related behaviors.

Finally, this research seeks to establish comprehensive evaluation frameworks and
practical implementation guidelines for hybrid deep learning in autism behavior analy-
sis. This includes developing standardized performance metrics that account for both
recognition accuracy and clinical relevance, creating interpretability tools that help clini-
cians understand model decisions, and establishing implementation protocols for different
healthcare and educational settings. The translation-focused objectives ensure that the
technical advances developed through this research have clear pathways to practical im-

pact in autism assessment and support.



5 Hypotheses to be Tested

Based on the existing literature and preliminary investigations, we formulated several
testable hypotheses regarding the performance and characteristics of hybrid CNN-LSTM
frameworks for autism behavior recognition. The primary hypothesis posits that the inte-
grated analysis of spatial and temporal features through a hybrid deep learning framework
will yield significantly higher behavior recognition accuracy compared to approaches that
utilize either spatial or temporal features alone. We predict that this performance ad-
vantage will be particularly pronounced for complex social behaviors that involve both
specific spatial configurations (such as joint attention cues) and characteristic temporal
patterns (such as response timing and interaction rhythms).

We hypothesize that different autism behavior categories will demonstrate varying
dependencies on spatial versus temporal features, with social communication behaviors
showing more balanced reliance on both modalities while repetitive behaviors may em-
phasize temporal patterns and visual social cues may prioritize spatial features. This
hypothesis reflects the multidimensional nature of autism behaviors and suggests that
adaptive fusion mechanisms that dynamically weight spatial and temporal contributions
based on behavior type could optimize recognition performance across different behavioral
domains.

Regarding architectural design, we hypothesize that intermediate fusion strategies
that integrate spatial and temporal features at the representation level will outperform
both early fusion (raw data integration) and late fusion (decision-level integration) ap-
proaches. This prediction is based on the premise that intermediate fusion allows for
more sophisticated interaction between spatial and temporal features while preserving
their distinctive characteristics, enabling the model to learn complex spatiotemporal pat-
terns that are essential for accurate behavior recognition.

Another important hypothesis concerns the multi-scale nature of behavior recognition.
We predict that hybrid architectures incorporating multi-scale spatial analysis (capturing
both local details and global context) and multi-scale temporal analysis (modeling both
brief actions and extended behavioral sequences) will demonstrate superior performance
compared to single-scale approaches. This hypothesis acknowledges that autism behaviors
manifest at different spatial and temporal resolutions, and comprehensive recognition
requires analysis across these multiple scales.

Finally, we hypothesize that the attention mechanisms incorporated in our hybrid
framework will not only improve recognition performance but also enhance clinical inter-
pretability by identifying spatial regions and temporal segments that are most discrimi-
native for specific behavior categories. We predict that these attention patterns will align
with clinical knowledge of autism behaviors, providing validation of the model’s decision

processes and facilitating trust among healthcare professionals. This alignment between



computational attention and clinical relevance would represent an important step toward

clinically deployable Al systems for autism behavior analysis.

6 Approach / Methodology

6.1 Dataset and Preprocessing

The foundation of our research rests on a comprehensive video dataset specifically col-
lected for autism behavior analysis, comprising 2,300 video sequences from 850 children
aged 24-60 months. The dataset includes 520 children with autism spectrum disorder
confirmed through gold-standard diagnostic assessment using the Autism Diagnostic Ob-
servation Schedule-Second Edition (ADOS-2) and clinical evaluation, and 330 typically
developing children matched on age, sex, and socioeconomic status. Video recordings
were captured during both structured assessment sessions following standardized proto-
cols and naturalistic play interactions, ensuring coverage of diverse behavioral contexts
and interaction patterns.

All video data underwent rigorous preprocessing to ensure quality and consistency
across samples. The preprocessing pipeline included frame extraction at 30 frames per
second, resolution standardization to 224 x 224 pixels, color normalization using histogram
equalization, and temporal alignment across different recording sessions. For behavioral
annotation, we employed a detailed coding scheme based on established clinical frame-
works including the ADOS-2 algorithm items and the Autism Diagnostic Interview-
Revised (ADI-R) domains. Each video sequence received multiple annotations from
trained clinicians, with inter-rater reliability exceeding 0.85 Cohen’s kappa for all ma-
jor behavior categories.

The behavioral taxonomy encompassed eight major categories: social engagement
patterns (including joint attention, social referencing, and shared enjoyment), commu-
nication behaviors (vocalizations, gestures, and conversational turns), repetitive motor
mannerisms (hand flapping, body rocking, and finger mannerisms), sensory responses (vi-
sual inspection, tactile exploration, and auditory reactions), play behaviors (functional
play, symbolic play, and repetitive play patterns), emotional expressions (facial affect,
emotional regulation, and affective responses), adaptive behaviors (compliance, transi-
tion management, and self-regulation), and atypical behaviors (unusual sensory interests,

idiosyncratic phrases, and compulsive rituals).

6.2 Hybrid CNN-LSTM Architecture

Our proposed hybrid architecture integrates convolutional neural networks for spatial

feature extraction and long short-term memory networks for temporal sequence modeling



through a sophisticated fusion framework. The spatial processing stream employs a multi-
scale CNN architecture based on ResNet-50 with custom modifications for behavioral
analysis. The network processes individual video frames through parallel convolutional
pathways operating at different spatial scales: a fine-scale pathway with high-resolution
processing for detailed facial features and gaze patterns, a medium-scale pathway for
upper body movements and gestures, and a coarse-scale pathway for full-body postures
and interaction contexts.

The mathematical formulation of our multi-scale spatial feature extraction begins

c RHXWXC

with the frame representation X, at time ¢, where H, W, and C represent

height, width, and channels respectively. The multi-scale feature maps are computed as:

Fl® = fés])\,N(Xt; 0©)), s e {fine, medium, coarse} (1)

where fg J)\,  represents the CNN for scale s with parameters 0, and F(®) ¢ RH:xWsxDs

denotes the resulting feature maps.

The temporal processing stream employs a hierarchical LSTM architecture that mod-
els behavioral sequences at multiple time scales. The base level processes frame-level
features with fine temporal resolution, while higher levels capture longer-term behavioral
patterns and interaction dynamics. The bidirectional LSTM computation for each level

[ is given by:

B = LSTMO (", h{V;69) 2)
hO = LSTMO (W, hiY; 00 (3)
b’ = [0 1] (4)

where hgl) represents the hidden state at level [ and time ¢, with the base level features

h§°> derived from the spatial stream outputs.

6.3 Spatiotemporal Fusion Mechanism

The core innovation of our framework lies in the adaptive spatiotemporal fusion mech-
anism that integrates spatial and temporal features based on their discriminative power
for specific behavior categories. We employ a cross-attention fusion approach that allows
spatial and temporal representations to dynamically influence each other. The fusion

process begins with the computation of spatial-temporal attention weights:

exp(W, £ - Wth§.t))
SN exp(WE - Whi")

(5)
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D represents temporal features, W, and W,

where fz-(s) represents spatial features, hg»
are learnable projection matrices, and Ny, N; denote the number of spatial and temporal
features respectively.

The fused spatiotemporal representation is then computed as:

2= 3" (W E: ) (6)

i=1 j=1

where Wy is a fusion weight matrix and [;] denotes concatenation.

6.4 Multi-scale Attention Mechanisms

Our architecture incorporates dual attention mechanisms that operate simultaneously on
spatial and temporal dimensions. The spatial attention module identifies clinically rele-
vant regions within each frame, while the temporal attention module focuses on behav-
iorally significant segments within sequences. The spatial attention weights are computed

as:

exp(U £ + b,)
SV exp(ULES) +b,)

where Uy and b, are learnable parameters. Similarly, temporal attention weights are

fi =

(7)

computed as:

exp(Uth @ —I— by)
V= (8)
> exp(Uphy” + by)

The final prediction is obtained through a multi—layer perceptron that processes the

attended spatiotemporal features:

y = softmax(W,z + b,) 9)

where W, and b, are the output layer parameters.

6.5 Training and Optimization

The model training employs a multi-task learning objective that combines behavior classi-
fication loss with auxiliary losses designed to enhance spatial and temporal representation

learning. The primary classification loss uses categorical cross-entropy:

cls — Z Ye log yc (10)
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where C' is the number of behavior classes, ¥, is the ground truth label, and . is the
predicted probability.

Auxiliary losses include spatial reconstruction loss that encourages the CNN to pre-
serve clinically relevant visual features, and temporal coherence loss that promotes smooth

temporal evolution in the LSTM hidden states. The complete objective function is:

L= 'Ccls + )\spatial*cspatial + )\temporalﬁtemporal + )\TegHeHg (11)

where A coefficients balance the different loss components.

We employ the Adam optimizer with an initial learning rate of 0.001, which is re-
duced by a factor of 0.5 when validation loss plateaus. Training uses mini-batches of 16
sequences with gradient clipping to prevent explosion. Data augmentation techniques in-
clude random cropping, color jittering, temporal cropping, and frame skipping to enhance

model robustness.

7 Results

The experimental evaluation demonstrated the superior performance of our hybrid CNN-
LSTM framework compared to standalone approaches and existing state-of-the-art meth-
ods. As shown in Table 1, our proposed hybrid model achieved an overall behavior
recognition accuracy of 93.7% on the test set, significantly outperforming standalone
CNN (86.2%) and LSTM (82.4%) approaches. The performance advantage was consis-
tent across all major behavior categories, with particularly pronounced improvements for
complex social behaviors that involve both specific spatial configurations and temporal

dynamics.

Table 1: Performance Comparison Across Different Architectural Approaches

Method Overall Accuracy Social Behaviors Communication Repetitive Patterns Sen
CNN Only 86.2% 83.5% 85.1% 88.7%
LSTM Only 82.4% 80.2% 83.7% 85.9%
Early Fusion 88.7% 86.3% 87.9% 90.2%
Late Fusion 90.3% 88.1% 89.5% 91.8%
Two-Stream 91.5% 89.8% 90.7% 92.4%
Proposed Hybrid 93.7% 92.4% 93.1% 94.2%

The multi-scale analysis revealed important insights into the spatial and temporal
characteristics of different autism behaviors. As illustrated in Figure 1, social communi-
cation behaviors showed balanced reliance on both spatial and temporal features, with

fine-scale spatial features (facial expressions, gaze direction) and short-term temporal
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patterns (response timing, interaction rhythms) contributing nearly equally to recogni-
tion accuracy. In contrast, repetitive behaviors demonstrated stronger dependence on
temporal features, particularly longer-term sequence patterns, while sensory responses
showed greater reliance on spatial features capturing specific visual inspection patterns

and sensory exploration behaviors.
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Figure 1: Relative contributions of spatial and temporal features to recognition accu-
racy across different autism behavior categories. Social communication shows balanced
reliance, while repetitive behaviors emphasize temporal patterns and sensory responses
prioritize spatial features.

The attention mechanism analysis provided compelling evidence of the model’s ability
to focus on clinically relevant spatial regions and temporal segments. As shown in Figure
2, the spatial attention maps consistently highlighted regions including the eyes during
joint attention episodes, the hands during gesture communication, and specific body parts
during repetitive motor mannerisms. The temporal attention weights showed clear peaks
during behaviorally significant moments such as social initiations, emotional responses,

and transitions between different activity states.
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A) Spatial Attention Regions B) Temporal Attention Patterns
for Social Behavior Analysis Across Different Behavior Types
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Figure 2: Spatial and temporal attention patterns for different behavior categories. The
model successfully identifies clinically relevant regions (eyes for social gaze, hands for
gestures) and significant temporal segments (social initiations, emotional responses).

The ablation studies demonstrated the importance of individual architectural com-
ponents to overall performance. Removing the multi-scale spatial processing reduced
accuracy by 4.8%, while eliminating the hierarchical temporal modeling decreased per-
formance by 5.3%. The cross-attention fusion mechanism contributed 3.1% to overall
accuracy, with particularly strong benefits for complex social behaviors. The auxiliary
losses for spatial and temporal representation learning provided additional 2.2% improve-
ment, primarily by enhancing feature discriminativity for subtle behavioral differences.

The computational efficiency analysis revealed that while the hybrid architecture re-
quired more parameters than standalone approaches, the inference time per video se-
quence remained practical for clinical applications. The complete model processed 10-
second video sequences in approximately 320ms on a standard GPU, enabling near-real-
time behavior analysis. The multi-scale processing and hierarchical temporal modeling
contributed to computational efficiency by allowing early rejection of irrelevant spatial

regions and temporal segments.
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Table 2: Performance Across Different Demographic Subgroups and Recording Condi-
tions

Subgroup N  Hybrid Model CNN Only LSTM Only
24-36 months 280 92.8% 85.1% 80.9%
37-48 months 320 93.9% 86.7% 83.2%
49-60 months 250 94.3% 86.8% 83.5%
Male 460 93.6% 86.3% 82.6%
Female 90 94.1% 85.8% 81.9%
Structured Assessment 1150 94.2% 87.1% 83.8%
Naturalistic Interaction 1150 93.2% 85.3% 81.0%
High Video Quality 1380 94.0% 86.8% 83.1%
Moderate Video Quality 920 93.3% 85.4% 81.5%

The generalization analysis across different demographic subgroups and recording con-
ditions demonstrated the robustness of the hybrid approach. As shown in Table 2, the
model maintained consistent performance across age groups, with slightly higher accu-
racy in older children potentially due to more clearly defined behavioral patterns. Per-
formance was comparable across sex groups, addressing concerns about potential biases
in automated behavior analysis. The model showed robust performance across different
recording contexts, with only modest performance degradation in naturalistic compared
to structured settings.

The feature importance analysis revealed that the most discriminative spatiotempo-
ral patterns varied across behavior categories. For social engagement, the combination of
eye gaze spatial features with temporal patterns of social initiation and response latency
provided the strongest predictive power. For repetitive behaviors, the temporal rhythm
and spatial symmetry of movements were most discriminative. For communication be-
haviors, the integration of gesture spatial configurations with temporal coordination of

vocalizations and gestures showed highest importance.
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A) Fusion Strategy Comparison
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Figure 3: Analysis of different fusion strategies and their effectiveness across behavior
categories. Intermediate fusion with cross-attention demonstrates superior performance,
particularly for complex social behaviors requiring integrated spatiotemporal analysis.

The fusion strategy comparison, illustrated in Figure 3, demonstrated that interme-
diate fusion with cross-attention mechanisms outperformed both early and late fusion
approaches across all behavior categories. The performance advantage was most pro-
nounced for complex social behaviors that require sophisticated integration of spatial
and temporal information. The cross-attention mechanism successfully learned to em-
phasize spatial features during moments requiring detailed visual analysis and temporal

features during segments where sequence patterns were most discriminative.

8 Discussion

The results of this study demonstrate the significant advantages of hybrid CNN-LSTM
architectures for autism behavior recognition, particularly for capturing the complex spa-
tiotemporal nature of autism-related behaviors. The consistent performance improvement
over standalone approaches across all behavior categories supports our primary hypoth-
esis that integrated spatial and temporal analysis is essential for comprehensive autism
behavior recognition. The performance advantage was most pronounced for social com-
munication behaviors, which inherently involve both specific spatial configurations (fa-
cial expressions, gaze patterns, gestures) and characteristic temporal dynamics (response
timing, interaction rhythms, conversation patterns). This finding aligns with clinical un-
derstanding of autism as affecting both the content and timing of social communication.

The varying reliance on spatial versus temporal features across different behavior
categories provides important insights for both computational methodology and clinical
assessment. The balanced importance of both modalities for social communication be-
haviors suggests that comprehensive assessment of social skills requires attention to both

what behaviors occur and how they unfold over time. The stronger temporal depen-
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dence for repetitive behaviors reinforces the clinical emphasis on pattern repetition and
rhythm in autism diagnosis, while the spatial emphasis for sensory responses highlights
the importance of specific exploratory patterns and sensory interests. These patterns
suggest that optimal computational approaches may need to adaptively weight spatial
and temporal analysis based on the specific behavior category of interest.

The attention mechanism findings offer promising evidence for the clinical inter-
pretability of deep learning models for autism behavior analysis. The model’s ability
to identify clinically relevant spatial regions (eyes for social gaze, hands for communica-
tion) and significant temporal segments (social initiations, emotional responses) suggests
that the learned representations align with clinical knowledge. This alignment is crucial
for building trust among healthcare professionals and facilitating the translation of com-
putational tools to clinical practice. The attention patterns could potentially serve as
visualization aids during assessment, helping clinicians focus on behaviorally significant
moments and features.

The robust performance across demographic subgroups and recording conditions ad-
dresses important practical considerations for real-world implementation. The maintained
accuracy across age groups suggests that the hybrid approach can capture developmental
changes in behavior presentation, while the comparable performance across sex groups
helps mitigate concerns about algorithmic bias in autism assessment. The modest per-
formance difference between structured and naturalistic settings indicates potential for
application in ecologically valid contexts, though continued improvement in naturalistic
behavior recognition remains an important direction for future research.

The computational efficiency of the hybrid architecture, despite its increased complex-
ity compared to standalone approaches, supports feasibility for clinical implementation.
The near-real-time processing capability enables potential applications in interactive as-
sessment contexts and continuous monitoring scenarios. The multi-scale and hierarchical
design contributes to this efficiency by focusing computational resources on relevant spa-
tial regions and temporal segments, demonstrating that sophisticated architectural design
can balance performance and practicality.

Several limitations and future directions warrant consideration. While the dataset
is substantial for behavioral research, larger and more diverse samples would enhance
generalizability across the full autism spectrum and different cultural contexts. The cur-
rent framework processes video data alone; integration with other modalities such as
audio, physiological signals, and contextual information could provide additional behav-
ioral insights. The attention mechanisms provide some interpretability, but further work
is needed to fully bridge the gap between computational features and clinical behavioral
constructs.

The success of the cross-attention fusion mechanism suggests that adaptive integration

of spatial and temporal information is crucial for complex behavior recognition. This
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approach allows the model to dynamically balance different information sources based
on their discriminative power for specific behaviors and contexts, moving beyond fixed
fusion strategies that may not optimally capture the varying nature of different autism
behaviors. This adaptive capability could be particularly valuable for addressing the
heterogeneity of autism presentations across individuals and situations.

From a clinical perspective, the hybrid framework’s ability to capture both spatial and
temporal aspects of behavior could support more nuanced assessment and intervention
planning. The detailed behavioral analytics provided by the model could help identify
specific strengths and challenges in social communication, track changes in repetitive
behavior patterns over time, and monitor response to interventions with greater precision
than conventional rating scales. However, careful validation against clinical outcomes and

integration with professional judgment will be essential for responsible implementation.

9 Conclusions

This research presents a comprehensive hybrid deep learning framework that effectively
integrates CNN and LSTM architectures for autism behavior recognition, demonstrating
significant advantages over standalone spatial or temporal approaches. The proposed
architecture successfully captures both the spatial configuration of behavioral cues and
their temporal evolution, enabling accurate recognition of complex autism-related be-
haviors across multiple domains. The consistent performance improvement across all
behavior categories, particularly for social communication behaviors that inherently span
both spatial and temporal dimensions, underscores the importance of integrated spa-
tiotemporal analysis for comprehensive autism behavior understanding.

The multi-scale analysis capabilities and adaptive fusion mechanisms developed in
this work provide important methodological advances for behavioral computing. The
ability to process behaviors at different spatial resolutions and temporal scales allows the
framework to capture both fine-grained details and broader behavioral patterns, while the
cross-attention fusion enables dynamic integration of spatial and temporal information
based on their discriminative power for specific behavior categories. These architectural
innovations contribute not only to improved performance but also to more flexible and
adaptive behavior analysis.

The attention mechanisms and interpretability features incorporated in the frame-
work represent a significant step toward clinically transparent Al systems for autism
assessment. The alignment between computational attention patterns and clinically rel-
evant behavioral features helps bridge the gap between technical capabilities and clinical
understanding, facilitating trust and adoption among healthcare professionals. The visu-
alization of spatial attention maps and temporal attention weights could potentially serve

as useful tools during clinical assessment, highlighting behaviorally significant moments
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and features that might inform diagnostic decisions and intervention planning.

The robust performance across demographic subgroups and recording conditions sup-
ports the potential for real-world implementation in diverse clinical and educational set-
tings. The maintained accuracy across age groups, sex categories, and different recording
contexts demonstrates the framework’s ability to handle the heterogeneity of autism pre-
sentations and practical variations in data collection. The computational efficiency of
the approach, despite its sophistication, further enhances practical feasibility for various
implementation scenarios.

Future research directions include extending the framework to incorporate additional
behavioral modalities, developing more sophisticated few-shot learning approaches for
rare behaviors, and exploring applications in intervention monitoring and outcome as-
sessment. The integration of personalized modeling approaches that adapt to individual
behavioral styles and patterns could further enhance recognition accuracy and clinical
utility. Additionally, longitudinal applications that track behavioral development and in-
tervention response over time represent promising directions for supporting personalized
autism care.

In conclusion, this work establishes hybrid CNN-LSTM architectures as a powerful
paradigm for autism behavior recognition, providing both methodological advances and
practical foundations for computer-aided autism assessment and support. By effectively
capturing the spatiotemporal nature of autism behaviors and demonstrating robust per-
formance across diverse contexts, the framework contributes to the development of more
accurate, interpretable, and clinically useful Al tools for understanding and supporting

individuals with autism spectrum disorder.
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