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Abstract

Autism Spectrum Disorder (ASD) is characterized by complex behavioral pat-

terns that manifest across both spatial and temporal dimensions, presenting sig-

nificant challenges for automated recognition systems. This research introduces a

novel hybrid deep learning framework that synergistically combines Convolutional

Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks to cap-

ture both spatial features from visual data and temporal dynamics from behavioral

sequences. Our architecture processes video data of social interactions through

parallel CNN streams for spatial feature extraction from individual frames, cou-

pled with LSTM networks that model temporal dependencies across behavioral

sequences. The framework incorporates multi-scale attention mechanisms, adap-

tive fusion techniques, and hierarchical feature aggregation to effectively integrate

spatial and temporal information. We evaluated our approach on a comprehensive



dataset of 2,300 video sequences from 850 children aged 24-60 months, including

both structured assessment sessions and naturalistic interactions. The proposed hy-

brid model achieved 93.7% recognition accuracy, significantly outperforming stan-

dalone CNN (86.2%) and LSTM (82.4%) approaches. Feature importance analysis

revealed that the integration of gaze pattern spatial features with temporal dy-

namics of social responsiveness provided the most discriminative power for autism

behavior recognition. This research demonstrates that the synergistic combination

of spatial and temporal modeling enables more accurate and clinically meaningful

autism behavior analysis, providing a robust foundation for computer-aided diag-

nostic systems and intervention monitoring tools.
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1 Introduction

Autism Spectrum Disorder represents a complex neurodevelopmental condition charac-

terized by distinctive behavioral patterns that unfold across both spatial and temporal

domains. The recognition and analysis of these behaviors present unique computational

challenges, as autism manifestations involve intricate spatial configurations in social in-

teractions, such as eye gaze patterns, facial expressions, and body postures, while si-

multaneously exhibiting characteristic temporal dynamics including repetitive behavior

sequences, response latencies, and social interaction rhythms. Traditional automated

approaches to autism behavior analysis have typically focused on either spatial features

extracted from individual frames or temporal patterns analyzed in isolation, failing to cap-

ture the essential spatiotemporal nature of autistic behaviors. This limitation represents

a significant gap in computational methods for autism assessment, as the integration of

spatial and temporal information is crucial for accurate behavior recognition and clinical

interpretation.

The emergence of deep learning has revolutionized computer vision and sequence

analysis, with Convolutional Neural Networks demonstrating remarkable capabilities in

spatial feature extraction and Long Short-Term Memory networks excelling in tempo-

ral pattern recognition. However, the application of these technologies to autism be-

havior analysis has largely remained within separate methodological silos. CNN-based

approaches have proven effective for analyzing static behavioral features such as facial

expressions, gaze direction, and body posture from individual video frames, but they

inherently miss the crucial temporal evolution of these behaviors. Conversely, LSTM-

based methods can effectively model behavioral sequences and temporal patterns but

may overlook important spatial relationships and fine-grained visual features that are
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essential for accurate autism behavior recognition. This disciplinary divide has limited

the development of comprehensive computational frameworks that can fully capture the

complex nature of autism-related behaviors.

This research addresses this fundamental limitation by introducing a novel hybrid

deep learning framework that seamlessly integrates CNN and LSTM architectures for

comprehensive autism behavior recognition. Our approach is grounded in the under-

standing that autism behaviors are inherently spatiotemporal phenomena, where both

the spatial configuration of social cues and their temporal evolution contribute to accu-

rate recognition and interpretation. The hybrid framework processes video data through

parallel streams that extract spatial features using advanced CNN architectures while

simultaneously modeling temporal dependencies through bidirectional LSTM networks.

The integration of these complementary capabilities enables the model to recognize com-

plex behavioral patterns such as the gradual development of joint attention, the rhythmic

patterns of stereotypical movements, and the dynamic progression of social engagement.

The clinical implications of effective spatiotemporal behavior analysis are substantial.

Accurate recognition of autism behaviors from naturalistic video data could facilitate ear-

lier and more objective assessment, enable continuous monitoring of intervention progress,

and provide detailed behavioral analytics that support personalized treatment planning.

Furthermore, by capturing both spatial and temporal dimensions of behavior, the pro-

posed framework can identify subtle behavioral signatures that may be missed by human

observers or conventional computational approaches. This comprehensive analysis capa-

bility is particularly valuable for understanding the heterogeneous presentation of autism

across different individuals and contexts.

Our hybrid framework incorporates several innovative components specifically de-

signed for autism behavior analysis. These include multi-scale spatial feature extraction

to capture behaviors at different granularities, attention mechanisms that dynamically

weight important spatial and temporal features, and adaptive fusion techniques that op-

timally combine spatial and temporal information based on their discriminative power for

specific behavioral classes. The architecture is designed to be computationally efficient

while maintaining high accuracy, making it suitable for potential deployment in clinical

and educational settings where computational resources may be limited.

This paper presents a comprehensive evaluation of the proposed hybrid framework

on a large and diverse dataset of autism behaviors, comparing its performance against

state-of-the-art standalone approaches and demonstrating its superior capability in cap-

turing the spatiotemporal nature of autism-related behaviors. The research contributes

not only a novel computational architecture but also important insights into the relative

contributions of spatial and temporal features for autism behavior recognition, advanc-

ing both methodological development and clinical understanding of autism behavioral

phenotypes.
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2 Literature Review

The application of computer vision and deep learning to autism behavior analysis has 
evolved significantly over the past decade, with researchers exploring various approaches 
to capture the complex behavioral manifestations of Autism Spectrum Disorder. Early 
work in this domain primarily focused on manual feature engineering and traditional 
machine learning methods. For instance, Jones and Klin (2013) conducted foundational 
research on eye-tracking patterns in autism, establishing the importance of gaze dynamics 
but relying on manually coded behavioral features. Similarly, Dawson et al. (2012) 
explored early behavioral markers using structured assessments, highlighting the temporal 
aspects of social responsiveness but with limited computational automation.

The advent of deep learning brought substantial advances in automated behavior 
analysis. Convolutional Neural Networks have been particularly influential in extracting 
spatial features from visual data. Li et al. (2017) applied CNNs to analyze facial expres-

sions in children with autism, demonstrating improved accuracy in emotion recognition 
but focusing exclusively on spatial features from individual frames. Their work high-

lighted the importance of fine-grained v isual f eatures b ut d id n ot a ddress t he temporal 
evolution of emotional expressions. Similarly, Rahman et al. (2018) used CNN architec-

tures for body pose estimation in autism, providing valuable insights into atypical motor 
patterns but treating each frame independently, thus missing the sequential nature of 
motor behaviors.

Long Short-Term Memory networks and other recurrent architectures have been em-

ployed to model temporal dynamics in autism behaviors. Dutta et al. (2019) applied 
LSTMs to analyze social interaction sequences, capturing temporal patterns in conver-

sation dynamics and turn-taking behaviors. Their approach demonstrated the value of 
sequential modeling but relied on pre-extracted features rather than learning temporal 
patterns directly from raw data.

The integration of spatial and temporal modeling has gained increasing attention in 
recent computer vision research, though applications to autism behavior analysis remain 
limited. The two-stream architecture proposed by Simonyan and Zisserman (2014) for 
action recognition inspired similar approaches in behavioral analysis, but these typically 
process spatial and temporal streams separately without deep integration. Carreira and 
Zisserman (2017) introduced the Inflated 3D ConvNet (I3D) for video analysis, which 
extends 2D convolutions to 3D to capture spatiotemporal features simultaneously. While 
powerful, this approach can be computationally intensive and may not optimally balance 
spatial and temporal feature importance for specific behavioral domains like autism.

Several researchers have explored hybrid approaches for behavior analysis in related
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domains. Nguyen et al. (2019) combined CNNs and LSTMs for human activity recogni-

tion, demonstrating superior performance compared to single-modality approaches. Their 
work provided important methodological insights but focused on general activities rather 
than the subtle behavioral patterns characteristic of autism. How-ever, the application of 
these approaches to autism-specific behaviors requires significant adaptation to address 
the unique characteristics of autistic social communication and interaction patterns.

Attention mechanisms have emerged as crucial components in modern deep learning 
architectures, enabling models to focus on relevant spatial regions and temporal segments. 
Vaswani et al. (2017) introduced the transformer architecture with self-attention, which 
has been adapted for various sequence modeling tasks. In autism behavior analysis, 
attention mechanisms could help identify clinically relevant behavioral moments, though 
their application in hybrid CNN-LSTM frameworks remains underexplored. Wang et 
al. (2018) proposed non-local neural networks for capturing long-range dependencies in 
videos, which could be particularly relevant for modeling extended social interactions in 
autism.

The current literature reveals several significant gaps that our research addresses. 
First, there is limited work on deeply integrated CNN-LSTM architectures specifically 
designed for autism behavior recognition, with most existing approaches focusing on ei-

ther spatial or temporal analysis in isolation. Second, the optimal strategies for fusing 
spatial and temporal features in autism behavior analysis remain poorly understood, 
with little research on adaptive fusion mechanisms that can weight spatial and temporal 
contributions based on their discriminative power for specific behaviors. Third, there is 
insufficient exploration of multi-scale analysis approaches that can capture autism behav-

iors at different spatial and temporal granularities, from fine-grained facial expressions to 
broader interaction patterns. Finally, the clinical interpretability of hybrid deep learning 
models for autism behavior analysis requires further investigation to ensure that compu-

tational insights align with clinical understanding and support practical implementation.

3 Research Questions

This research is guided by several fundamental questions that address both technical and 
clinical aspects of hybrid deep learning for autism behavior recognition. The primary re-

search question investigates whether a carefully designed hybrid CNN-LSTM framework 
can achieve superior performance in autism behavior recognition compared to standalone 
spatial or temporal approaches, and how this performance advantage varies across dif-

ferent types of autism-related behaviors. This question encompasses not only overall
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recognition accuracy but also the specific behavioral domains where spatial-temporal

integration provides the greatest benefits, such as social engagement patterns, commu-

nicative gestures, or repetitive behaviors.

A secondary line of inquiry examines the optimal architectural strategies for integrat-

ing spatial and temporal features in autism behavior analysis. This involves investigating

different fusion mechanisms, including early fusion of raw data, intermediate fusion of fea-

ture representations, and late fusion of model predictions, to determine which approach

most effectively captures the spatiotemporal nature of autism behaviors. Additionally,

we explore how attention mechanisms can be incorporated to dynamically weight the im-

portance of spatial features and temporal sequences based on their relevance for specific

behavioral recognition tasks.

Further questions explore the multi-scale nature of autism behaviors and how hy-

brid architectures can effectively capture behaviors at different spatial and temporal

resolutions. We investigate whether certain behaviors are better recognized through

fine-grained spatial analysis while others require broader temporal context, and how

the framework can adaptively balance these different analytical perspectives. This in-

cludes examining the interaction between spatial scale (from individual facial features to

full-body movements) and temporal scale (from brief moments to extended interaction

sequences) in behavior recognition accuracy.

Another important question concerns the generalization capabilities of hybrid mod-

els across different demographic groups, recording conditions, and behavioral contexts.

We investigate whether the integration of spatial and temporal features enhances model

robustness to variations in video quality, lighting conditions, camera angles, and indi-

vidual differences in behavioral presentation. This includes examining potential biases

in model performance across age groups, sex categories, and cultural backgrounds, and

determining whether spatial-temporal integration helps mitigate these biases.

Finally, we consider the clinical interpretability and utility of hybrid deep learning

models for autism behavior analysis. This involves investigating whether the integrated

spatial and temporal features learned by the model align with clinical understanding

of autism behaviors, and whether the model’s recognition patterns can provide insights

that support clinical assessment and intervention planning. Understanding how compu-

tational behavior recognition translates to clinically meaningful information is essential

for bridging the gap between technical innovation and practical healthcare applications.

4 Objectives

The primary objective of this research is to design, implement, and comprehensively eval-

uate a novel hybrid deep learning framework that effectively integrates CNN and LSTM

architectures for autism behavior recognition. This encompasses the development of so-
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phisticated architectural components for spatial feature extraction, temporal sequence

modeling, and multi-modal feature fusion, specifically optimized for the unique charac-

teristics of autism-related behaviors. The framework aims to capture both the spatial

configuration of social cues and their temporal evolution, enabling comprehensive analysis

of complex behavioral patterns that are characteristic of Autism Spectrum Disorder.

A crucial objective involves the creation and curation of a large-scale, well-annotated

dataset of autism behaviors suitable for training and evaluating hybrid deep learning

models. This includes collecting video data across diverse behavioral contexts, developing

detailed annotation protocols based on established clinical frameworks, and ensuring

representation of the heterogeneous presentations of autism across different age groups,

severity levels, and demographic backgrounds. The dataset construction emphasizes both

spatial diversity (varying camera angles, distances, and settings) and temporal diversity

(different interaction durations and behavioral sequence lengths) to support robust model

development.

Another key objective focuses on the development of advanced spatial feature ex-

traction capabilities using convolutional neural networks specifically adapted for autism

behavior analysis. This includes designing multi-scale CNN architectures that can cap-

ture behaviors at different spatial resolutions, from fine-grained facial features to full-body

movement patterns. The spatial analysis component incorporates attention mechanisms

to identify clinically relevant regions of interest and adaptive pooling strategies to handle

variations in behavioral scale and perspective.

We also aim to develop sophisticated temporal modeling approaches using LSTM net-

works and related sequence processing architectures. This involves designing bidirectional

LSTM structures that can capture both forward and backward temporal dependencies in

behavioral sequences, implementing hierarchical temporal modeling to address behaviors

at different time scales, and incorporating temporal attention mechanisms to focus on be-

haviorally significant moments. The temporal analysis component is specifically designed

to model the characteristic rhythms, latencies, and patterns of autism-related behaviors.

Finally, this research seeks to establish comprehensive evaluation frameworks and

practical implementation guidelines for hybrid deep learning in autism behavior analy-

sis. This includes developing standardized performance metrics that account for both

recognition accuracy and clinical relevance, creating interpretability tools that help clini-

cians understand model decisions, and establishing implementation protocols for different

healthcare and educational settings. The translation-focused objectives ensure that the

technical advances developed through this research have clear pathways to practical im-

pact in autism assessment and support.
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5 Hypotheses to be Tested

Based on the existing literature and preliminary investigations, we formulated several

testable hypotheses regarding the performance and characteristics of hybrid CNN-LSTM

frameworks for autism behavior recognition. The primary hypothesis posits that the inte-

grated analysis of spatial and temporal features through a hybrid deep learning framework

will yield significantly higher behavior recognition accuracy compared to approaches that

utilize either spatial or temporal features alone. We predict that this performance ad-

vantage will be particularly pronounced for complex social behaviors that involve both

specific spatial configurations (such as joint attention cues) and characteristic temporal

patterns (such as response timing and interaction rhythms).

We hypothesize that different autism behavior categories will demonstrate varying

dependencies on spatial versus temporal features, with social communication behaviors

showing more balanced reliance on both modalities while repetitive behaviors may em-

phasize temporal patterns and visual social cues may prioritize spatial features. This

hypothesis reflects the multidimensional nature of autism behaviors and suggests that

adaptive fusion mechanisms that dynamically weight spatial and temporal contributions

based on behavior type could optimize recognition performance across different behavioral

domains.

Regarding architectural design, we hypothesize that intermediate fusion strategies

that integrate spatial and temporal features at the representation level will outperform

both early fusion (raw data integration) and late fusion (decision-level integration) ap-

proaches. This prediction is based on the premise that intermediate fusion allows for

more sophisticated interaction between spatial and temporal features while preserving

their distinctive characteristics, enabling the model to learn complex spatiotemporal pat-

terns that are essential for accurate behavior recognition.

Another important hypothesis concerns the multi-scale nature of behavior recognition.

We predict that hybrid architectures incorporating multi-scale spatial analysis (capturing

both local details and global context) and multi-scale temporal analysis (modeling both

brief actions and extended behavioral sequences) will demonstrate superior performance

compared to single-scale approaches. This hypothesis acknowledges that autism behaviors

manifest at different spatial and temporal resolutions, and comprehensive recognition

requires analysis across these multiple scales.

Finally, we hypothesize that the attention mechanisms incorporated in our hybrid

framework will not only improve recognition performance but also enhance clinical inter-

pretability by identifying spatial regions and temporal segments that are most discrimi-

native for specific behavior categories. We predict that these attention patterns will align

with clinical knowledge of autism behaviors, providing validation of the model’s decision

processes and facilitating trust among healthcare professionals. This alignment between
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computational attention and clinical relevance would represent an important step toward

clinically deployable AI systems for autism behavior analysis.

6 Approach / Methodology

6.1 Dataset and Preprocessing

The foundation of our research rests on a comprehensive video dataset specifically col-

lected for autism behavior analysis, comprising 2,300 video sequences from 850 children

aged 24-60 months. The dataset includes 520 children with autism spectrum disorder

confirmed through gold-standard diagnostic assessment using the Autism Diagnostic Ob-

servation Schedule-Second Edition (ADOS-2) and clinical evaluation, and 330 typically

developing children matched on age, sex, and socioeconomic status. Video recordings

were captured during both structured assessment sessions following standardized proto-

cols and naturalistic play interactions, ensuring coverage of diverse behavioral contexts

and interaction patterns.

All video data underwent rigorous preprocessing to ensure quality and consistency

across samples. The preprocessing pipeline included frame extraction at 30 frames per

second, resolution standardization to 224×224 pixels, color normalization using histogram

equalization, and temporal alignment across different recording sessions. For behavioral

annotation, we employed a detailed coding scheme based on established clinical frame-

works including the ADOS-2 algorithm items and the Autism Diagnostic Interview-

Revised (ADI-R) domains. Each video sequence received multiple annotations from

trained clinicians, with inter-rater reliability exceeding 0.85 Cohen’s kappa for all ma-

jor behavior categories.

The behavioral taxonomy encompassed eight major categories: social engagement

patterns (including joint attention, social referencing, and shared enjoyment), commu-

nication behaviors (vocalizations, gestures, and conversational turns), repetitive motor

mannerisms (hand flapping, body rocking, and finger mannerisms), sensory responses (vi-

sual inspection, tactile exploration, and auditory reactions), play behaviors (functional

play, symbolic play, and repetitive play patterns), emotional expressions (facial affect,

emotional regulation, and affective responses), adaptive behaviors (compliance, transi-

tion management, and self-regulation), and atypical behaviors (unusual sensory interests,

idiosyncratic phrases, and compulsive rituals).

6.2 Hybrid CNN-LSTM Architecture

Our proposed hybrid architecture integrates convolutional neural networks for spatial

feature extraction and long short-term memory networks for temporal sequence modeling

9



through a sophisticated fusion framework. The spatial processing stream employs a multi-

scale CNN architecture based on ResNet-50 with custom modifications for behavioral

analysis. The network processes individual video frames through parallel convolutional

pathways operating at different spatial scales: a fine-scale pathway with high-resolution

processing for detailed facial features and gaze patterns, a medium-scale pathway for

upper body movements and gestures, and a coarse-scale pathway for full-body postures

and interaction contexts.

The mathematical formulation of our multi-scale spatial feature extraction begins

with the frame representation Xt ∈ RH×W×C at time t, where H, W , and C represent

height, width, and channels respectively. The multi-scale feature maps are computed as:

F
(s)
t = f

(s)
CNN(Xt; θ

(s)), s ∈ {fine,medium, coarse} (1)

where f
(s)
CNN represents the CNN for scale s with parameters θ(s), and F

(s)
t ∈ RHs×Ws×Ds

denotes the resulting feature maps.

The temporal processing stream employs a hierarchical LSTM architecture that mod-

els behavioral sequences at multiple time scales. The base level processes frame-level

features with fine temporal resolution, while higher levels capture longer-term behavioral

patterns and interaction dynamics. The bidirectional LSTM computation for each level

l is given by:

−→
h

(l)
t = LSTM(l)(h

(l)
t−1,h

(l−1)
t ; θ(l)→ ) (2)

←−
h

(l)
t = LSTM(l)(h

(l)
t+1,h

(l−1)
t ; θ(l)← ) (3)

h
(l)
t = [

−→
h

(l)
t ;
←−
h

(l)
t ] (4)

where h
(l)
t represents the hidden state at level l and time t, with the base level features

h
(0)
t derived from the spatial stream outputs.

6.3 Spatiotemporal Fusion Mechanism

The core innovation of our framework lies in the adaptive spatiotemporal fusion mech-

anism that integrates spatial and temporal features based on their discriminative power

for specific behavior categories. We employ a cross-attention fusion approach that allows

spatial and temporal representations to dynamically influence each other. The fusion

process begins with the computation of spatial-temporal attention weights:

αij =
exp(Wsf

(s)
i ·Wth

(t)
j )∑Ns

k=1

∑Nt

l=1 exp(Wsf
(s)
k ·Wth

(t)
l )

(5)
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where f
(s)
i represents spatial features, h

(t)
j represents temporal features, Ws and Wt

are learnable projection matrices, and Ns, Nt denote the number of spatial and temporal

features respectively.

The fused spatiotemporal representation is then computed as:

z =
Ns∑
i=1

Nt∑
j=1

αij(Wf [f
(s)
i ;h

(t)
j ]) (6)

where Wf is a fusion weight matrix and [; ] denotes concatenation.

6.4 Multi-scale Attention Mechanisms

Our architecture incorporates dual attention mechanisms that operate simultaneously on

spatial and temporal dimensions. The spatial attention module identifies clinically rele-

vant regions within each frame, while the temporal attention module focuses on behav-

iorally significant segments within sequences. The spatial attention weights are computed

as:

βi =
exp(Usf

(s)
i + bs)∑Ns

k=1 exp(Usf
(s)
k + bs)

(7)

where Us and bs are learnable parameters. Similarly, temporal attention weights are

computed as:

γj =
exp(Uth

(t)
j + bt)∑Nt

l=1 exp(Uth
(t)
l + bt)

(8)

The final prediction is obtained through a multi-layer perceptron that processes the

attended spatiotemporal features:

ŷ = softmax(Woz + bo) (9)

where Wo and bo are the output layer parameters.

6.5 Training and Optimization

The model training employs a multi-task learning objective that combines behavior classi-

fication loss with auxiliary losses designed to enhance spatial and temporal representation

learning. The primary classification loss uses categorical cross-entropy:

Lcls = −
C∑
c=1

yc log(ŷc) (10)
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where C is the number of behavior classes, yc is the ground truth label, and ŷc is the

predicted probability.

Auxiliary losses include spatial reconstruction loss that encourages the CNN to pre-

serve clinically relevant visual features, and temporal coherence loss that promotes smooth

temporal evolution in the LSTM hidden states. The complete objective function is:

L = Lcls + λspatialLspatial + λtemporalLtemporal + λreg∥θ∥22 (11)

where λ coefficients balance the different loss components.

We employ the Adam optimizer with an initial learning rate of 0.001, which is re-

duced by a factor of 0.5 when validation loss plateaus. Training uses mini-batches of 16

sequences with gradient clipping to prevent explosion. Data augmentation techniques in-

clude random cropping, color jittering, temporal cropping, and frame skipping to enhance

model robustness.

7 Results

The experimental evaluation demonstrated the superior performance of our hybrid CNN-

LSTM framework compared to standalone approaches and existing state-of-the-art meth-

ods. As shown in Table 1, our proposed hybrid model achieved an overall behavior

recognition accuracy of 93.7% on the test set, significantly outperforming standalone

CNN (86.2%) and LSTM (82.4%) approaches. The performance advantage was consis-

tent across all major behavior categories, with particularly pronounced improvements for

complex social behaviors that involve both specific spatial configurations and temporal

dynamics.

Table 1: Performance Comparison Across Different Architectural Approaches

Method Overall Accuracy Social Behaviors Communication Repetitive Patterns Sensory Responses Play Behaviors

CNN Only 86.2% 83.5% 85.1% 88.7% 87.3% 84.9%

LSTM Only 82.4% 80.2% 83.7% 85.9% 81.6% 79.8%

Early Fusion 88.7% 86.3% 87.9% 90.2% 89.1% 87.4%

Late Fusion 90.3% 88.1% 89.5% 91.8% 90.7% 89.2%

Two-Stream 91.5% 89.8% 90.7% 92.4% 91.9% 90.6%

Proposed Hybrid 93.7% 92.4% 93.1% 94.2% 93.8% 92.9%

The multi-scale analysis revealed important insights into the spatial and temporal

characteristics of different autism behaviors. As illustrated in Figure 1, social communi-

cation behaviors showed balanced reliance on both spatial and temporal features, with

fine-scale spatial features (facial expressions, gaze direction) and short-term temporal
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patterns (response timing, interaction rhythms) contributing nearly equally to recogni-

tion accuracy. In contrast, repetitive behaviors demonstrated stronger dependence on

temporal features, particularly longer-term sequence patterns, while sensory responses

showed greater reliance on spatial features capturing specific visual inspection patterns

and sensory exploration behaviors.

Figure 1: Relative contributions of spatial and temporal features to recognition accu-
racy across different autism behavior categories. Social communication shows balanced
reliance, while repetitive behaviors emphasize temporal patterns and sensory responses
prioritize spatial features.

The attention mechanism analysis provided compelling evidence of the model’s ability

to focus on clinically relevant spatial regions and temporal segments. As shown in Figure

2, the spatial attention maps consistently highlighted regions including the eyes during

joint attention episodes, the hands during gesture communication, and specific body parts

during repetitive motor mannerisms. The temporal attention weights showed clear peaks

during behaviorally significant moments such as social initiations, emotional responses,

and transitions between different activity states.
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Figure 2: Spatial and temporal attention patterns for different behavior categories. The
model successfully identifies clinically relevant regions (eyes for social gaze, hands for
gestures) and significant temporal segments (social initiations, emotional responses).

The ablation studies demonstrated the importance of individual architectural com-

ponents to overall performance. Removing the multi-scale spatial processing reduced

accuracy by 4.8%, while eliminating the hierarchical temporal modeling decreased per-

formance by 5.3%. The cross-attention fusion mechanism contributed 3.1% to overall

accuracy, with particularly strong benefits for complex social behaviors. The auxiliary

losses for spatial and temporal representation learning provided additional 2.2% improve-

ment, primarily by enhancing feature discriminativity for subtle behavioral differences.

The computational efficiency analysis revealed that while the hybrid architecture re-

quired more parameters than standalone approaches, the inference time per video se-

quence remained practical for clinical applications. The complete model processed 10-

second video sequences in approximately 320ms on a standard GPU, enabling near-real-

time behavior analysis. The multi-scale processing and hierarchical temporal modeling

contributed to computational efficiency by allowing early rejection of irrelevant spatial

regions and temporal segments.
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Table 2: Performance Across Different Demographic Subgroups and Recording Condi-
tions

Subgroup N Hybrid Model CNN Only LSTM Only

24-36 months 280 92.8% 85.1% 80.9%

37-48 months 320 93.9% 86.7% 83.2%

49-60 months 250 94.3% 86.8% 83.5%

Male 460 93.6% 86.3% 82.6%

Female 90 94.1% 85.8% 81.9%

Structured Assessment 1150 94.2% 87.1% 83.8%

Naturalistic Interaction 1150 93.2% 85.3% 81.0%

High Video Quality 1380 94.0% 86.8% 83.1%

Moderate Video Quality 920 93.3% 85.4% 81.5%

The generalization analysis across different demographic subgroups and recording con-

ditions demonstrated the robustness of the hybrid approach. As shown in Table 2, the

model maintained consistent performance across age groups, with slightly higher accu-

racy in older children potentially due to more clearly defined behavioral patterns. Per-

formance was comparable across sex groups, addressing concerns about potential biases

in automated behavior analysis. The model showed robust performance across different

recording contexts, with only modest performance degradation in naturalistic compared

to structured settings.

The feature importance analysis revealed that the most discriminative spatiotempo-

ral patterns varied across behavior categories. For social engagement, the combination of

eye gaze spatial features with temporal patterns of social initiation and response latency

provided the strongest predictive power. For repetitive behaviors, the temporal rhythm

and spatial symmetry of movements were most discriminative. For communication be-

haviors, the integration of gesture spatial configurations with temporal coordination of

vocalizations and gestures showed highest importance.
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Figure 3: Analysis of different fusion strategies and their effectiveness across behavior
categories. Intermediate fusion with cross-attention demonstrates superior performance,
particularly for complex social behaviors requiring integrated spatiotemporal analysis.

The fusion strategy comparison, illustrated in Figure 3, demonstrated that interme-

diate fusion with cross-attention mechanisms outperformed both early and late fusion

approaches across all behavior categories. The performance advantage was most pro-

nounced for complex social behaviors that require sophisticated integration of spatial

and temporal information. The cross-attention mechanism successfully learned to em-

phasize spatial features during moments requiring detailed visual analysis and temporal

features during segments where sequence patterns were most discriminative.

8 Discussion

The results of this study demonstrate the significant advantages of hybrid CNN-LSTM

architectures for autism behavior recognition, particularly for capturing the complex spa-

tiotemporal nature of autism-related behaviors. The consistent performance improvement

over standalone approaches across all behavior categories supports our primary hypoth-

esis that integrated spatial and temporal analysis is essential for comprehensive autism

behavior recognition. The performance advantage was most pronounced for social com-

munication behaviors, which inherently involve both specific spatial configurations (fa-

cial expressions, gaze patterns, gestures) and characteristic temporal dynamics (response

timing, interaction rhythms, conversation patterns). This finding aligns with clinical un-

derstanding of autism as affecting both the content and timing of social communication.

The varying reliance on spatial versus temporal features across different behavior

categories provides important insights for both computational methodology and clinical

assessment. The balanced importance of both modalities for social communication be-

haviors suggests that comprehensive assessment of social skills requires attention to both

what behaviors occur and how they unfold over time. The stronger temporal depen-
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dence for repetitive behaviors reinforces the clinical emphasis on pattern repetition and

rhythm in autism diagnosis, while the spatial emphasis for sensory responses highlights

the importance of specific exploratory patterns and sensory interests. These patterns

suggest that optimal computational approaches may need to adaptively weight spatial

and temporal analysis based on the specific behavior category of interest.

The attention mechanism findings offer promising evidence for the clinical inter-

pretability of deep learning models for autism behavior analysis. The model’s ability

to identify clinically relevant spatial regions (eyes for social gaze, hands for communica-

tion) and significant temporal segments (social initiations, emotional responses) suggests

that the learned representations align with clinical knowledge. This alignment is crucial

for building trust among healthcare professionals and facilitating the translation of com-

putational tools to clinical practice. The attention patterns could potentially serve as

visualization aids during assessment, helping clinicians focus on behaviorally significant

moments and features.

The robust performance across demographic subgroups and recording conditions ad-

dresses important practical considerations for real-world implementation. The maintained

accuracy across age groups suggests that the hybrid approach can capture developmental

changes in behavior presentation, while the comparable performance across sex groups

helps mitigate concerns about algorithmic bias in autism assessment. The modest per-

formance difference between structured and naturalistic settings indicates potential for

application in ecologically valid contexts, though continued improvement in naturalistic

behavior recognition remains an important direction for future research.

The computational efficiency of the hybrid architecture, despite its increased complex-

ity compared to standalone approaches, supports feasibility for clinical implementation.

The near-real-time processing capability enables potential applications in interactive as-

sessment contexts and continuous monitoring scenarios. The multi-scale and hierarchical

design contributes to this efficiency by focusing computational resources on relevant spa-

tial regions and temporal segments, demonstrating that sophisticated architectural design

can balance performance and practicality.

Several limitations and future directions warrant consideration. While the dataset

is substantial for behavioral research, larger and more diverse samples would enhance

generalizability across the full autism spectrum and different cultural contexts. The cur-

rent framework processes video data alone; integration with other modalities such as

audio, physiological signals, and contextual information could provide additional behav-

ioral insights. The attention mechanisms provide some interpretability, but further work

is needed to fully bridge the gap between computational features and clinical behavioral

constructs.

The success of the cross-attention fusion mechanism suggests that adaptive integration

of spatial and temporal information is crucial for complex behavior recognition. This
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approach allows the model to dynamically balance different information sources based

on their discriminative power for specific behaviors and contexts, moving beyond fixed

fusion strategies that may not optimally capture the varying nature of different autism

behaviors. This adaptive capability could be particularly valuable for addressing the

heterogeneity of autism presentations across individuals and situations.

From a clinical perspective, the hybrid framework’s ability to capture both spatial and

temporal aspects of behavior could support more nuanced assessment and intervention

planning. The detailed behavioral analytics provided by the model could help identify

specific strengths and challenges in social communication, track changes in repetitive

behavior patterns over time, and monitor response to interventions with greater precision

than conventional rating scales. However, careful validation against clinical outcomes and

integration with professional judgment will be essential for responsible implementation.

9 Conclusions

This research presents a comprehensive hybrid deep learning framework that effectively

integrates CNN and LSTM architectures for autism behavior recognition, demonstrating

significant advantages over standalone spatial or temporal approaches. The proposed

architecture successfully captures both the spatial configuration of behavioral cues and

their temporal evolution, enabling accurate recognition of complex autism-related be-

haviors across multiple domains. The consistent performance improvement across all

behavior categories, particularly for social communication behaviors that inherently span

both spatial and temporal dimensions, underscores the importance of integrated spa-

tiotemporal analysis for comprehensive autism behavior understanding.

The multi-scale analysis capabilities and adaptive fusion mechanisms developed in

this work provide important methodological advances for behavioral computing. The

ability to process behaviors at different spatial resolutions and temporal scales allows the

framework to capture both fine-grained details and broader behavioral patterns, while the

cross-attention fusion enables dynamic integration of spatial and temporal information

based on their discriminative power for specific behavior categories. These architectural

innovations contribute not only to improved performance but also to more flexible and

adaptive behavior analysis.

The attention mechanisms and interpretability features incorporated in the frame-

work represent a significant step toward clinically transparent AI systems for autism

assessment. The alignment between computational attention patterns and clinically rel-

evant behavioral features helps bridge the gap between technical capabilities and clinical

understanding, facilitating trust and adoption among healthcare professionals. The visu-

alization of spatial attention maps and temporal attention weights could potentially serve

as useful tools during clinical assessment, highlighting behaviorally significant moments
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and features that might inform diagnostic decisions and intervention planning.

The robust performance across demographic subgroups and recording conditions sup-

ports the potential for real-world implementation in diverse clinical and educational set-

tings. The maintained accuracy across age groups, sex categories, and different recording

contexts demonstrates the framework’s ability to handle the heterogeneity of autism pre-

sentations and practical variations in data collection. The computational efficiency of

the approach, despite its sophistication, further enhances practical feasibility for various

implementation scenarios.

Future research directions include extending the framework to incorporate additional

behavioral modalities, developing more sophisticated few-shot learning approaches for

rare behaviors, and exploring applications in intervention monitoring and outcome as-

sessment. The integration of personalized modeling approaches that adapt to individual

behavioral styles and patterns could further enhance recognition accuracy and clinical

utility. Additionally, longitudinal applications that track behavioral development and in-

tervention response over time represent promising directions for supporting personalized

autism care.

In conclusion, this work establishes hybrid CNN-LSTM architectures as a powerful

paradigm for autism behavior recognition, providing both methodological advances and

practical foundations for computer-aided autism assessment and support. By effectively

capturing the spatiotemporal nature of autism behaviors and demonstrating robust per-

formance across diverse contexts, the framework contributes to the development of more

accurate, interpretable, and clinically useful AI tools for understanding and supporting

individuals with autism spectrum disorder.
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