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Abstract

Autism Spectrum Disorder (ASD) represents a complex neurodevelopmental

condition characterized by challenges in social interaction, communication, and

restricted or repetitive behaviors. Early detection of ASD is crucial for timely in-

tervention and improved long-term outcomes. This research presents a novel deep

learning architecture specifically designed for early autism detection using mul-

timodal neuroimaging data. Our framework integrates both structural Magnetic

Resonance Imaging (sMRI) and functional Magnetic Resonance Imaging (fMRI)

to capture complementary neurobiological signatures of ASD. The proposed model

employs a dual-pathway convolutional neural network for processing structural fea-

tures from sMRI and a recurrent neural network with attention mechanisms for

analyzing functional connectivity dynamics from fMRI. The multimodal features

are subsequently fused through a carefully designed integration module. We eval-

uated our approach on the extensively used ABIDE I and II datasets, comprising

over 2,000 subjects from multiple imaging sites. Our model achieved a classification



accuracy of 92.7%, sensitivity of 91.3%, and specificity of 93.8%, significantly out-

performing existing single-modality approaches and traditional machine learning

methods. The attention mechanisms within our architecture provide interpretable

insights by highlighting brain regions most discriminative for ASD classification,

particularly in the default mode network, salience network, and frontotemporal

pathways. This research establishes a robust foundation for computer-aided early

autism diagnosis and offers promising directions for clinical translation.

Keywords: Autism Spectrum Disorder, Deep Learning, Neuroimaging, Magnetic

Resonance Imaging, Functional Connectivity, Early Detection, Multimodal Fusion

1 Introduction

Autism Spectrum Disorder (ASD) represents one of the most prevalent neurodevelopmen-

tal disorders, affecting approximately 1 in 54 children according to recent epidemiological

studies. The heterogeneous nature of ASD manifests in diverse behavioral phenotypes

and neurobiological underpinnings, making early and accurate diagnosis particularly chal-

lenging. Current diagnostic procedures primarily rely on behavioral observations and

developmental history, which often delay diagnosis until after 4 years of age, missing the

critical window for early intervention during peak neuroplasticity periods. Neuroimaging

technologies, particularly structural and functional MRI, have emerged as powerful tools

for identifying neurobiological markers associated with ASD, offering the potential for

objective, quantitative assessment.

The integration of artificial intelligence, specifically deep learning methodologies, with

neuroimaging data has opened new frontiers in computational neuroscience and psychi-

atric diagnostics. Deep learning models possess the capacity to automatically learn hier-

archical representations from complex neuroimaging data, capturing subtle patterns that

may elude conventional analysis techniques. Previous research has demonstrated the

feasibility of machine learning approaches for ASD classification; however, these studies

have often been limited by their reliance on single imaging modalities, small sample sizes,

or hand-engineered features that may not fully capture the complex neuropathology of

autism.

This research addresses these limitations by proposing a comprehensive deep learning

architecture specifically tailored for early autism detection using multimodal neuroimag-

ing data. Our approach synergistically combines structural information from sMRI, which

reveals anatomical abnormalities in gray matter density, cortical thickness, and volumet-

ric variations, with functional connectivity patterns derived from fMRI, which reflect the

dynamic interactions between distributed brain networks. The fundamental premise un-

derlying our work is that the integration of complementary information from multiple
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imaging modalities will provide a more comprehensive characterization of the neurobio-
logical alterations in ASD, consequently improving classification performance and clinical 
utility.

Beyond achieving high classification accuracy, our model incorporates interpretability 
mechanisms that identify the most discriminative brain regions and functional connec-
tions for ASD detection. This transparency is crucial for building clinical trust and 
advancing our understanding of the neural mechanisms underlying autism. The devel-
opment of such automated diagnostic tools holds significant promise for facilitating ear-
lier intervention, enabling personalized treatment strategies, and ultimately improving 
long-term outcomes for individuals with ASD. This paper establishes a foundational AI 
framework for autism analysis that can be extended and refined in future research.

2 Literature Review

The application of machine learning to autism detection using neuroimaging data has 
evolved substantially over the past decade. Early approaches predominantly utilized tra-
ditional machine learning algorithms with hand-crafted features extracted from neuroim-

ages. Ecker et al. (2010) demonstrated the utility of support vector machines (SVMs) for 
classifying adults with ASD based on structural MRI features, achieving moderate accu-
racy while highlighting the importance of feature selection. Similarly, Uddin et al. (2013) 
employed functional connectivity features with SVM classifiers, identifying alterations in 
the default mode network as particularly discriminative for ASD. These pioneering stud-
ies established the feasibility of computer-aided diagnosis for autism but were constrained 
by their reliance on manually engineered features and single imaging modalities.

The emergence of deep learning has revolutionized neuroimaging analysis by enabling 
end-to-end learning directly from raw or minimally processed imaging data. Plitt et al.
(2015) conducted a comprehensive comparison of various machine learning approaches 
for ASD classification a nd c oncluded t hat while d eep l earning s howed p romise, i ts full 
potential was limited by dataset sizes available at the time. The creation of large-scale 
collaborative datasets, particularly the Autism Brain Imaging Data Exchange (ABIDE), 
has been instrumental in advancing this field b y p roviding s ufficient dat a for  training 
complex deep learning models. Di Martino et al. (2014) detailed the initial ABIDE 
repository, which has since expanded to include over 2,000 participants across multiple 
international sites.

Recent years have witnessed increasing sophistication in deep learning architectures 
for neuroimaging analysis. Heinsfeld et al. (2018) applied deep autoencoders to functional 
connectivity data for ASD classification, demonstrating improved performance over tra-
ditional methods. However, their approach focused exclusively on fMRI data, potentially 
missing complementary information from structural scans. 

3



While innovative, their method did not fully leverage the temporal dynamics inherent in 
functional MRI data.

Multimodal approaches have gained traction as researchers recognize the complemen-

tary nature of different imaging m odalities. Parisot et a l. (2018) proposed a graph-based 
convolutional neural network that incorporated both phenotypic information and imaging 
data, achieving state-of-the-art performance at the time. However, their model treated 
different modalities somewhat independently without deeply integrated feature learning.

The integration of attention mechanisms into deep learning models for neuroimaging 
represents a significant advancement, as these mechanisms not only improve performance 
but also provide insights into which brain regions contribute most to classification deci-
sions. However, their approach was limited to fMRI data and did not leverage the 
structural-functional relationships that may be crucial for understanding ASD patho-
physiology.

Our research builds upon these foundations while addressing several key limitations in 
the existing literature. We propose a novel architecture that deeply integrates structural 
and functional information through dedicated pathway networks with shared representa-
tions. Furthermore, we incorporate sophisticated attention mechanisms at multiple levels 
to enhance both performance and interpretability. Our approach represents a compre-

hensive framework for multimodal neuroimaging analysis specifically optimized for early 
autism detection.

3 Research Questions

This research is guided by several fundamental questions that address both technical and 
clinical aspects of automated autism detection. The primary research question investi-
gates whether a carefully designed deep learning architecture that integrates multimodal 
neuroimaging data can achieve superior classification performance for autism spectrum 
disorder compared to existing single-modality approaches and traditional machine learn-
ing methods. This question encompasses both the technical feasibility of such integration 
and its practical utility in improving diagnostic accuracy.

A secondary line of inquiry examines which specific neurobiological features are most 
discriminative for ASD classification when analyzed through our proposed architecture. 
This question seeks to determine whether the model identifies brain regions and networks
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previously established in the autism literature, such as the default mode network, social

brain regions, and frontostriatal pathways, or discovers novel neural signatures that may

not have been previously associated with the disorder. The interpretability of the model

is crucial for addressing this question and for building bridges between computational

approaches and clinical neuroscience.

Further questions explore the generalizability of the proposed approach across different

demographic groups and imaging sites. We investigate whether the model maintains

consistent performance across varying age ranges, particularly in younger children where

early detection is most critical, and across different sex groups, given the established

sex differences in autism presentation and prevalence. Additionally, we examine the

model’s robustness to site-specific variations in scanning protocols and equipment, which

represents a significant challenge in neuroimaging-based classification.

Finally, we consider the temporal dynamics of functional connectivity and their rel-

evance for autism classification. This involves investigating whether specific patterns of

time-varying functional connectivity, as captured by our recurrent neural network archi-

tecture, provide discriminative power beyond static connectivity measures. Understand-

ing these dynamic aspects may reveal important insights into the neural mechanisms

underlying autism and contribute to more sensitive biomarkers for early detection.

4 Objectives

The primary objective of this research is to design, implement, and validate a novel deep

learning architecture for early autism detection using multimodal neuroimaging data.

This encompasses the development of a dual-pathway network architecture with special-

ized components for processing structural MRI and functional MRI data, followed by

an effective fusion mechanism that integrates information from both modalities. The

architectural design prioritizes both classification performance and interpretability, en-

suring that the model not only achieves high accuracy but also provides insights into its

decision-making process.

A crucial objective involves the comprehensive evaluation of the proposed model

against established baseline methods and state-of-the-art approaches. This comparative

analysis will assess performance across multiple metrics including accuracy, sensitivity,

specificity, and area under the receiver operating characteristic curve. The evaluation will

determine whether the multimodal approach provides significant advantages over single-

modality methods and whether the incorporation of attention mechanisms enhances both

performance and clinical relevance.

Another key objective focuses on identifying the most discriminative neuroimaging fea-

tures for autism classification through detailed analysis of the model’s attention weights

and feature representations. This involves mapping the important regions back to stan-
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dard brain atlases, interpreting their biological significance in the context of existing

autism literature, and potentially discovering novel neural correlates that may not have

been previously associated with the disorder. This objective bridges the gap between

computational methodology and clinical neuroscience.

We also aim to assess the generalizability and robustness of the proposed approach

across diverse populations and imaging conditions. This includes evaluating performance

consistency across different age groups, with particular emphasis on younger children

where early intervention is most beneficial, and across different sex groups, given the

pronounced sex differences in autism presentation. Additionally, we will examine the

model’s resilience to site-specific variations in scanning protocols, which represents a

significant practical challenge in neuroimaging-based diagnostics.

Finally, this research seeks to establish a foundational framework for computer-aided

autism diagnosis that can be extended and refined in future work. This involves creating

a modular architecture that can incorporate additional data modalities as they become

available, developing visualization tools that facilitate clinical interpretation, and laying

the groundwork for potential clinical translation through rigorous validation and perfor-

mance analysis.

5 Hypotheses to be Tested

Based on existing literature and preliminary analyses, we formulated several testable

hypotheses regarding the performance and characteristics of our proposed deep learning

architecture. The primary hypothesis posits that the multimodal integration of structural

and functional neuroimaging data will yield significantly higher classification accuracy

for autism spectrum disorder compared to models utilizing either modality alone. This

hypothesis is grounded in the understanding that structural and functional measures

capture complementary aspects of neural organization, and their combination should

provide a more comprehensive characterization of the neurobiological alterations in ASD.

We hypothesize that specific brain networks will emerge as particularly discriminative

for autism classification, with the default mode network, social brain regions (including

superior temporal sulcus, fusiform face area, and medial prefrontal cortex), and frontos-

triatal pathways demonstrating heightened importance in the model’s attention mecha-

nisms. This prediction aligns with extensive neuroimaging literature implicating these

networks in autism pathophysiology, particularly in domains related to social cognition,

executive function, and restricted interests.

Regarding demographic factors, we hypothesize that our model will maintain robust

performance across different age groups but may show slightly reduced accuracy in very

young children (under 5 years) due to greater brain plasticity and developmental variabil-

ity during early childhood. Similarly, we anticipate that performance will be consistent
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across sex groups, though the specific neural features most discriminative for classifica-

tion may differ between males and females, reflecting known sex differences in autism

neurobiology.

Another important hypothesis concerns the value of dynamic functional connectivity

features compared to static connectivity measures. We predict that the temporal dynam-

ics of functional connectivity, as captured by our recurrent neural network architecture,

will provide additional discriminative power beyond static connectivity, particularly for

distinguishing more subtle presentations of autism. This hypothesis is based on emerg-

ing evidence that time-varying functional connectivity patterns may reflect fundamental

aspects of neural organization relevant to neurodevelopmental disorders.

Finally, we hypothesize that the incorporation of attention mechanisms will not only

improve classification performance but also enhance the clinical interpretability of the

model by highlighting brain regions consistent with established knowledge of autism neu-

robiology. This alignment between data-driven feature importance and clinically estab-

lished neural correlates would strengthen the potential for clinical translation and build

confidence in the model’s decision-making process.

6 Approach / Methodology

6.1 Dataset and Preprocessing

This research utilized the extensively curated Autism Brain Imaging Data Exchange

(ABIDE) I and II datasets, which collectively comprise structural and functional MRI

data from 2,144 participants across 37 international imaging sites. The dataset includes

1,112 individuals with ASD and 1,032 typically developing controls, with ages ranging

from 5 to 64 years. For the specific objective of early detection, we focused our primary

analysis on the pediatric subgroup (ages 5-18 years, n=1,573), while maintaining the full

dataset for supplementary analyses to assess generalizability across the lifespan.

All structural MRI images underwent rigorous preprocessing using the Computational

Anatomy Toolbox (CAT12) within the SPM12 framework. The preprocessing pipeline

included bias field correction to address intensity inhomogeneities, tissue segmentation

into gray matter, white matter, and cerebrospinal fluid, spatial normalization to the

Montreal Neurological Institute (MNI) standard space using high-dimensional DARTEL

registration, and modulation to preserve tissue volume information. The normalized

and modulated gray matter images were subsequently smoothed with an 8mm full-width

at half-maximum Gaussian kernel to enhance signal-to-noise ratio while respecting the

cortical architecture.

Functional MRI preprocessing was conducted using the Data Processing Assistant

for Resting-State fMRI (DPARSF) based on SPM12. The pipeline included removal of
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the first few volumes to allow for magnetic field stabilization, slice timing correction to

account for acquisition time differences between slices, realignment to correct for head

motion, coregistration with the corresponding structural image, normalization to MNI

space using parameters derived from structural segmentation, and spatial smoothing

with a 6mm Gaussian kernel. Additional nuisance regression was performed to remove

potential confounding signals from white matter, cerebrospinal fluid, and global mean

signal, followed by band-pass filtering (0.01-0.1 Hz) to focus on biologically relevant low-

frequency fluctuations.

Functional connectivity was quantified by computing Pearson correlation coefficients

between the time series of 200 predefined regions of interest from the Brainnetome Atlas,

resulting in symmetric 200×200 correlation matrices for each subject. For the dynamic

functional connectivity analysis, we employed a sliding window approach with a window

length of 30 volumes (60 seconds) and a step size of 1 volume, generating a sequence

of connectivity matrices that capture the temporal evolution of functional interactions

between brain regions.

6.2 Proposed Architecture

Our proposed deep learning architecture employs a dual-pathway design to process struc-

tural and functional neuroimaging data separately before integrating them through a

multimodal fusion module. The structural pathway utilizes a three-dimensional convolu-

tional neural network (3D-CNN) to extract hierarchical features from preprocessed gray

matter maps. The network begins with two convolutional blocks, each consisting of a

3D convolution with 32 and 64 filters respectively, kernel size of 3×3×3, stride of 1, and

same padding, followed by batch normalization, ReLU activation, and max pooling with

pool size of 2×2×2. These are followed by two additional convolutional blocks with 128

and 256 filters, after which global average pooling generates a 256-dimensional feature

representation.

The functional pathway processes both static and dynamic functional connectivity

information through a hybrid architecture. For static connectivity, we employ a two-

dimensional CNN that takes the entire functional connectivity matrix as input. This

network comprises two convolutional layers with 64 and 128 filters respectively, kernel

size of 3×3, followed by batch normalization, ReLU activation, and max pooling. For

dynamic connectivity, we implement a long short-term memory (LSTM) network with

attention mechanism that processes the sequence of connectivity matrices derived from

the sliding window analysis. The LSTM contains 128 hidden units and is followed by an

attention layer that computes weighted combinations of all hidden states, allowing the

model to focus on the most discriminative temporal segments.

The multimodal fusion module integrates features from both pathways through a
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concatenation operation followed by two fully connected layers with 512 and 128 units

respectively, each with batch normalization and ReLU activation. Dropout regularization

with a rate of 0.5 is applied after each fully connected layer to prevent overfitting. The

final classification layer utilizes a sigmoid activation function for binary classification

between ASD and typically developing controls.

The complete model is trained end-to-end using the Adam optimizer with an initial

learning rate of 0.001, which is reduced by a factor of 0.5 if validation loss plateaus

for 10 consecutive epochs. We employ binary cross-entropy as the loss function and

implement early stopping with a patience of 15 epochs to prevent overfitting. The model

is implemented using TensorFlow 2.4 and trained on NVIDIA Tesla V100 GPUs.

6.3 Mathematical Formulation

The structural feature extraction process can be formally described as follows. Let Xs ∈
RH×W×D represent the preprocessed structural MRI volume, where H, W , and D denote

the height, width, and depth dimensions respectively. The operation of a 3D convolutional

layer can be expressed as:

F (l)
s (i, j, k) =

M−1∑
m=0

N−1∑
n=0

P−1∑
p=0

W (l)(m,n, p) ·X(l−1)
s (i+m, j + n, k + p) + b(l) (1)

where F
(l)
s represents the feature maps at layer l, W (l) denotes the convolutional filters

of size M × N × P , and b(l) is the bias term. The ReLU activation function is applied

element-wise: ReLU(x) = max(0, x).

For the functional pathway processing dynamic connectivity, let Xf = {C1, C2, ..., CT}
represent the sequence of functional connectivity matrices across T time windows, where

each Ct ∈ RR×R is the connectivity matrix at time t for R brain regions. The LSTM

computations at each time step t are given by:

ft = σ(Wf · [ht−1, Ct] + bf ) (2)

it = σ(Wi · [ht−1, Ct] + bi) (3)

c̃t = tanh(Wc · [ht−1, Ct] + bc) (4)

ct = ft ⊙ ct−1 + it ⊙ c̃t (5)

ot = σ(Wo · [ht−1, Ct] + bo) (6)

ht = ot ⊙ tanh(ct) (7)

where ft, it, and ot represent the forget, input, and output gates respectively, ct is

the cell state, ht is the hidden state, σ denotes the sigmoid function, and ⊙ represents
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element-wise multiplication.

The attention mechanism computes a context vector v as a weighted sum of all hidden

states:

αt =
exp(h⊤

t w)∑T
j=1 exp(h

⊤
j w)

, v =
T∑
t=1

αtht (8)

where w is a learnable weight vector and αt represents the attention weight for time

step t.

The final prediction is obtained through:

ŷ = σ(Wc · [zs; zf ] + bc) (9)

where zs and zf are the feature representations from the structural and functional

pathways respectively, Wc and bc are the classification layer parameters, and σ is the

sigmoid function.

6.4 Experimental Setup

We implemented a rigorous evaluation framework to assess model performance and ensure

robust findings. The dataset was partitioned using stratified five-fold cross-validation,

maintaining consistent class distributions across folds. Within each fold, we further di-

vided the training data into training and validation subsets (80%-20% split) for hyperpa-

rameter tuning and early stopping. This approach maximizes the utilization of available

data while providing unbiased performance estimates.

To establish comprehensive benchmarks, we compared our proposed multimodal ar-

chitecture against several baseline methods including support vector machines with lin-

ear and radial basis function kernels, random forests, and single-modality deep learn-

ing models using only structural or functional data. Additionally, we compared against

state-of-the-art methods from recent literature, reimplementing them using their reported

architectures and hyperparameters.

Model performance was evaluated using multiple metrics including accuracy, sensitiv-

ity, specificity, precision, F1-score, and area under the receiver operating characteristic

curve (AUC-ROC). Statistical significance of performance differences was assessed using

paired t-tests with Bonferroni correction for multiple comparisons. Confidence intervals

for performance metrics were computed through bootstrapping with 1,000 resamples.

To enhance the clinical interpretability of our model, we implemented several visu-

alization techniques including saliency maps for structural MRI, attention heatmaps for

functional connectivity, and region importance rankings based on gradient-weighted class

activation mapping (Grad-CAM). These visualizations facilitate understanding of which

brain features most strongly influence the classification decision, potentially revealing
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novel insights into autism neurobiology.

7 Results

The experimental evaluation demonstrated the superior performance of our proposed mul-

timodal deep learning architecture compared to existing approaches. As shown in Table

1, our model achieved an overall classification accuracy of 92.7% on the test set, with

sensitivity of 91.3% and specificity of 93.8%. The area under the ROC curve reached

0.963, indicating excellent discriminative capability between ASD and typically devel-

oping controls. These results represent a statistically significant improvement over all

baseline methods (p ¡ 0.001, paired t-test with Bonferroni correction).

Table 1: Performance Comparison of Different Classification Approaches

Method Accuracy Sensitivity Specificity Precision F1-Score AUC-ROC

SVM (Linear) 78.3% 76.2% 80.1% 78.9% 77.5% 0.821

SVM (RBF) 81.5% 79.8% 82.9% 81.2% 80.5% 0.857

Random Forest 83.7% 82.1% 85.0% 83.4% 82.7% 0.882

3D-CNN (sMRI only) 86.2% 84.5% 87.6% 85.9% 85.2% 0.913

2D-CNN (fMRI only) 87.9% 86.3% 89.2% 87.5% 86.9% 0.928

LSTM (dynamic FC) 88.4% 87.1% 89.5% 88.0% 87.5% 0.935

Proposed Multimodal 92.7% 91.3% 93.8% 92.5% 91.9% 0.963

Analysis of performance across demographic subgroups revealed important patterns

relevant to clinical application. In the pediatric subgroup (ages 5-18 years), which is most

relevant for early detection, our model maintained strong performance with accuracy of

91.8%, sensitivity of 90.5%, and specificity of 92.9%. Performance was slightly higher in

adolescents (13-18 years) compared to younger children (5-12 years), though the difference

was not statistically significant (p = 0.087). Across sex groups, the model demonstrated

comparable performance for males (accuracy = 92.4%) and females (accuracy = 91.9

The ablation study provided valuable insights into the contribution of different archi-

tectural components to overall performance. Removing the structural pathway resulted

in a significant performance decrease to 88.1% accuracy, while removing the functional

pathway reduced accuracy to 86.9%. This demonstrates that both modalities contribute

substantially to classification, with functional data providing slightly more discriminative

power. Eliminating the attention mechanism from the LSTM component led to a reduc-

tion in accuracy to 90.3% and a more pronounced decrease in interpretability, highlighting

the dual benefits of attention for both performance and clinical relevance.
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Figure 1: Receiver Operating Characteristic (ROC) curves for the proposed multimodal
architecture compared to baseline methods. Our approach demonstrates superior perfor-
mance across the entire range of classification thresholds.

The analysis of feature importance through attention weights and saliency maps re-

vealed neurobiologically plausible patterns aligned with existing knowledge of autism

neuropathology. As illustrated in Figure 2, the structural pathway assigned highest im-

portance to regions including the superior temporal sulcus, fusiform gyrus, prefrontal

cortex, and anterior cingulate cortex. These areas are consistently implicated in social

cognition, face processing, executive function, and emotion regulation—domains charac-

teristically affected in autism.
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Figure 2: Brain regions identified as most discriminative for ASD classification by the
structural pathway (A) and functional pathway (B). Color intensity indicates relative
importance based on Grad-CAM visualization.

The functional pathway highlighted alterations in several large-scale brain networks,

with the most prominent contributions from the default mode network, salience network,

and frontoparietal network. Specifically, reduced functional connectivity within the de-

fault mode network and between the default mode and salience networks emerged as

strong discriminative features. These findings align with the ”dysconnectivity” hypoth-

esis of autism, which posits that altered integration between distributed brain networks

underlies core symptoms.

Analysis of dynamic functional connectivity revealed that individuals with ASD ex-

hibited greater variability in connectivity strength over time, particularly in connections

involving the prefrontal cortex and insula. The attention mechanism in our LSTM com-

ponent consistently assigned higher weights to time windows where this variability was

most pronounced, suggesting that moment-to-moment fluctuations in network organiza-

tion may provide valuable diagnostic information beyond static connectivity measures.

Table 2: Performance Across Different Age Groups and Sex

Subgroup N Accuracy Sensitivity Specificity

Children (5-12 years) 894 90.7% 89.2% 91.9%

Adolescents (13-18 years) 679 92.4% 91.5% 93.2%

Adults (19+ years) 571 93.1% 92.3% 93.8%

Males 1,723 92.4% 91.6% 93.1%

Females 421 91.9% 90.2% 93.1%

Full Sample 2,144 92.7% 91.3% 93.8%
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The model demonstrated robust performance across different imaging sites, with ac-

curacy ranging from 89.8% to 94.1% across the 37 sites included in the ABIDE dataset.

Sites with higher magnetic field strength (3T vs 1.5T) generally showed slightly better

performance, though this difference was not statistically significant after controlling for

sample size. This cross-site consistency is particularly noteworthy given the substantial

variations in scanning protocols, acquisition parameters, and participant characteristics

across different research centers.

Training dynamics revealed that the multimodal architecture converged faster and to

a better optimum compared to single-modality networks. The combined loss decreased

smoothly throughout training, with the validation loss closely tracking the training loss,

indicating effective regularization and minimal overfitting. The attention weights stabi-

lized after approximately 50 epochs, suggesting that the model consistently learned to

focus on similar temporal segments and brain regions across different training runs.

8 Discussion

The results of this study demonstrate the significant advantage of integrating multi-

modal neuroimaging data through a carefully designed deep learning architecture for

autism spectrum disorder classification. Our proposed model achieved state-of-the-art

performance on the extensive ABIDE dataset, outperforming existing approaches by

a substantial margin. The performance improvement relative to single-modality base-

lines underscores the complementary nature of structural and functional information in

characterizing the neurobiological underpinnings of autism. While previous research has

predominantly focused on either structural or functional alterations in isolation, our find-

ings suggest that the relationship between these different aspects of neural organization

contains valuable diagnostic information.

The feature importance analysis yielded neurobiologically interpretable results that

align with established knowledge of autism neuropathology. The prominence of social

brain regions including the superior temporal sulcus and fusiform gyrus in the structural

pathway corroborates extensive literature documenting structural abnormalities in these

areas in individuals with ASD. Similarly, the functional pathway’s emphasis on default

mode network connectivity resonates with the growing body of evidence implicating this

network in self-referential processing and social cognition—domains typically impaired in

autism. The convergence between our data-driven feature importance rankings and prior

hypothesis-driven research strengthens confidence in the model’s decision-making process

and enhances its potential clinical utility.

An intriguing finding concerns the temporal dynamics of functional connectivity,

which emerged as a discriminative feature beyond static connectivity measures. The

increased connectivity variability observed in individuals with ASD, particularly in net-
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works involving the prefrontal cortex, may reflect difficulties in maintaining stable neural

states appropriate for ongoing cognitive demands. This observation aligns with theo-

ries proposing that autism involves impaired neural stability and increased neural noise,

though further research is needed to elucidate the specific cognitive and behavioral cor-

relates of these dynamic connectivity patterns.

The consistent performance across demographic groups addresses an important con-

sideration for clinical translation. The maintained accuracy in younger children is par-

ticularly promising given the critical importance of early detection during periods of

heightened neuroplasticity. Similarly, the comparable performance across sex groups

suggests that the model captures fundamental neural signatures of autism that transcend

sex-specific manifestations of the disorder. This is noteworthy given the historical focus

on male presentations in autism research and the frequent underdiagnosis in females.

Several limitations warrant consideration when interpreting these results. Despite the

extensive sample size relative to previous neuroimaging studies, the ABIDE dataset still

represents a fraction of the true heterogeneity within the autism spectrum. The partici-

pants included in research studies may not fully represent the broader clinical population,

particularly individuals with co-occurring intellectual disability or minimal verbal ability

who are often excluded from MRI research. Additionally, while our model demonstrated

robustness across imaging sites, performance variations highlight the ongoing challenge

of harmonizing data across different scanners and protocols.

The interpretability mechanisms incorporated in our architecture represent an impor-

tant step toward clinically transparent AI systems, but further work is needed to bridge

the gap between computational feature importance and clinically actionable insights.

While we can identify which brain regions contribute most to classification, translating

these findings into individualized clinical interpretations remains challenging. Future re-

search should explore ways to present model decisions in a format that aligns with clinical

reasoning and diagnostic practices.

The performance achieved by our model suggests potential for clinical application as

an decision support tool, though several steps are necessary before real-world implemen-

tation. Prospective validation in clinical settings, assessment of generalizability to new

populations, and integration with behavioral and clinical measures would strengthen the

translational potential. Furthermore, developing frameworks for communicating model

uncertainty and limitations to clinicians will be essential for responsible implementation.

9 Conclusions

This research presents a comprehensive deep learning framework for early autism detec-

tion using multimodal neuroimaging data. The proposed architecture establishes a new

state-of-the-art in automated ASD classification while providing interpretable insights
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into the neurobiological features most relevant for diagnosis. The significant performance

advantage of our multimodal approach over single-modality methods underscores the im-

portance of integrating complementary information from different imaging modalities to

fully capture the complex neural alterations associated with autism spectrum disorder.

The clinical relevance of our findings is enhanced by the neurobiological plausibility of

the identified discriminative features, which align with established knowledge of autism

neuropathology while potentially revealing novel aspects of network dynamics. The ro-

bustness of performance across demographic groups and imaging sites further supports

the potential for real-world application, particularly as an aid for early detection during

critical developmental periods.

Several directions emerge for future research. Extending the framework to incorporate

additional data modalities such as diffusion tensor imaging, genetic information, or be-

havioral measures could provide even more comprehensive characterization of the autism

phenotype. Developing personalized approaches that account for individual variations

in symptom profiles and cognitive abilities would enhance clinical utility. Furthermore,

adapting the methodology for longitudinal analysis could enable tracking of developmen-

tal trajectories and response to interventions.

From a clinical translation perspective, important next steps include validation in

prospective clinical samples, development of user-friendly interfaces for clinicians, and

establishment of regulatory frameworks for medical AI applications. Collaboration be-

tween computational researchers, neuroscientists, and clinicians will be essential to ensure

that these technological advances ultimately benefit individuals with autism and their

families.

In conclusion, this work establishes a robust foundation for computer-aided autism

diagnosis using deep learning and multimodal neuroimaging. By achieving high perfor-

mance while maintaining interpretability and biological plausibility, our approach repre-

sents a significant step toward bridging the gap between computational innovation and

clinical application in autism spectrum disorder.
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