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Abstract

Autism Spectrum Disorder (ASD) represents a complex neurodevelopmental
condition characterized by challenges in social interaction, communication, and
restricted or repetitive behaviors. Early detection of ASD is crucial for timely in-
tervention and improved long-term outcomes. This research presents a novel deep
learning architecture specifically designed for early autism detection using mul-
timodal neuroimaging data. Our framework integrates both structural Magnetic
Resonance Imaging (sMRI) and functional Magnetic Resonance Imaging (fMRI)
to capture complementary neurobiological signatures of ASD. The proposed model
employs a dual-pathway convolutional neural network for processing structural fea-
tures from sMRI and a recurrent neural network with attention mechanisms for
analyzing functional connectivity dynamics from fMRI. The multimodal features
are subsequently fused through a carefully designed integration module. We eval-
uated our approach on the extensively used ABIDE I and II datasets, comprising

over 2,000 subjects from multiple imaging sites. Our model achieved a classification



accuracy of 92.7%, sensitivity of 91.3%, and specificity of 93.8%, significantly out-
performing existing single-modality approaches and traditional machine learning
methods. The attention mechanisms within our architecture provide interpretable
insights by highlighting brain regions most discriminative for ASD classification,
particularly in the default mode network, salience network, and frontotemporal
pathways. This research establishes a robust foundation for computer-aided early

autism diagnosis and offers promising directions for clinical translation.
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1 Introduction

Autism Spectrum Disorder (ASD) represents one of the most prevalent neurodevelopmen-
tal disorders, affecting approximately 1 in 54 children according to recent epidemiological
studies. The heterogeneous nature of ASD manifests in diverse behavioral phenotypes
and neurobiological underpinnings, making early and accurate diagnosis particularly chal-
lenging. Current diagnostic procedures primarily rely on behavioral observations and
developmental history, which often delay diagnosis until after 4 years of age, missing the
critical window for early intervention during peak neuroplasticity periods. Neuroimaging
technologies, particularly structural and functional MRI, have emerged as powerful tools
for identifying neurobiological markers associated with ASD, offering the potential for
objective, quantitative assessment.

The integration of artificial intelligence, specifically deep learning methodologies, with
neuroimaging data has opened new frontiers in computational neuroscience and psychi-
atric diagnostics. Deep learning models possess the capacity to automatically learn hier-
archical representations from complex neuroimaging data, capturing subtle patterns that
may elude conventional analysis techniques. Previous research has demonstrated the
feasibility of machine learning approaches for ASD classification; however, these studies
have often been limited by their reliance on single imaging modalities, small sample sizes,
or hand-engineered features that may not fully capture the complex neuropathology of
autism.

This research addresses these limitations by proposing a comprehensive deep learning
architecture specifically tailored for early autism detection using multimodal neuroimag-
ing data. Our approach synergistically combines structural information from sMRI, which
reveals anatomical abnormalities in gray matter density, cortical thickness, and volumet-
ric variations, with functional connectivity patterns derived from fMRI, which reflect the
dynamic interactions between distributed brain networks. The fundamental premise un-

derlying our work is that the integration of complementary information from multiple



imaging modalities will provide a more comprehensive characterization of the neurobio-
logical alterations in ASD, consequently improving classification performance and clinical
utility.

Beyond achieving high classification accuracy, our model incorporates interpretability
mechanisms that identify the most discriminative brain regions and functional connec-
tions for ASD detection. This transparency is crucial for building clinical trust and
advancing our understanding of the neural mechanisms underlying autism. The devel-
opment of such automated diagnostic tools holds significant promise for facilitating ear-
lier intervention, enabling personalized treatment strategies, and ultimately improving
long-term outcomes for individuals with ASD. This paper establishes a foundational Al

framework for autism analysis that can be extended and refined in future research.

2 Literature Review

The application of machine learning to autism detection using neuroimaging data has
evolved substantially over the past decade. Early approaches predominantly utilized tra-
ditional machine learning algorithms with hand-crafted features extracted from neuroim-
ages. Ecker et al. (2010) demonstrated the utility of support vector machines (SVMs) for
classifying adults with ASD based on structural MRI features, achieving moderate accu-
racy while highlighting the importance of feature selection. Similarly, Uddin et al. (2013)
employed functional connectivity features with SVM classifiers, identifying alterations in
the default mode network as particularly discriminative for ASD. These pioneering stud-
ies established the feasibility of computer-aided diagnosis for autism but were constrained
by their reliance on manually engineered features and single imaging modalities.

The emergence of deep learning has revolutionized neuroimaging analysis by enabling
end-to-end learning directly from raw or minimally processed imaging data. Plitt et al.
(2015) conducted a comprehensive comparison of various machine learning approaches
for ASD classification and c oncluded t hat w hile d eep 1 earning s howed p romise, i ts full
potential was limited by dataset sizes available at the time. The creation of large-scale
collaborative datasets, particularly the Autism Brain Imaging Data Exchange (ABIDE),
has been instrumental in advancing this field by p roviding s ufficient dat a for training
complex deep learning models. Di Martino et al. (2014) detailed the initial ABIDE
repository, which has since expanded to include over 2,000 participants across multiple
international sites.

Recent years have witnessed increasing sophistication in deep learning architectures
for neuroimaging analysis. Heinsfeld et al. (2018) applied deep autoencoders to functional
connectivity data for ASD classification, d emonstrating improved p erformance over tra-
ditional methods. However, their approach focused exclusively on fMRI data, potentially

missing complementary information from structural scans.



While innovative, their method did not fully leverage the temporal dynamics inherent in
functional MRI data.

Multimodal approaches have gained traction as researchers recognize the complemen-
tary nature of different imaging m odalities. Parisot et a 1. (2018) proposed a graph-based
convolutional neural network that incorporated both phenotypic information and imaging
data, achieving state-of-the-art performance at the time. However, their model treated
different modalities somewhat independently without deeply integrated feature learning.

The integration of attention mechanisms into deep learning models for neuroimaging
represents a significant advancement, as these mechanisms not only improve performance
but also provide insights into which brain regions contribute most to classification deci-
sions. However, their approach was limited to fMRI data and did not leverage the
structural-functional relationships that may be crucial for understanding ASD patho-
physiology.

Our research builds upon these foundations while addressing several key limitations in
the existing literature. We propose a novel architecture that deeply integrates structural
and functional information through dedicated pathway networks with shared representa-
tions. Furthermore, we incorporate sophisticated attention mechanisms at multiple levels
to enhance both performance and interpretability. Our approach represents a compre-
hensive framework for multimodal neuroimaging analysis specifically optimized for early

autism detection.

3 Research Questions

This research is guided by several fundamental questions that address both technical and
clinical aspects of automated autism detection. The primary research question investi-
gates whether a carefully designed deep learning architecture that integrates multimodal
neuroimaging data can achieve superior classification performance for autism spectrum
disorder compared to existing single-modality approaches and traditional machine learn-
ing methods. This question encompasses both the technical feasibility of such integration
and its practical utility in improving diagnostic accuracy.

A secondary line of inquiry examines which specific neurobiological features are most
discriminative for ASD classification when analyzed through our proposed architecture.

This question seeks to determine whether the model identifies brain regions and networks



previously established in the autism literature, such as the default mode network, social
brain regions, and frontostriatal pathways, or discovers novel neural signatures that may
not have been previously associated with the disorder. The interpretability of the model
is crucial for addressing this question and for building bridges between computational
approaches and clinical neuroscience.

Further questions explore the generalizability of the proposed approach across different
demographic groups and imaging sites. We investigate whether the model maintains
consistent performance across varying age ranges, particularly in younger children where
early detection is most critical, and across different sex groups, given the established
sex differences in autism presentation and prevalence. Additionally, we examine the
model’s robustness to site-specific variations in scanning protocols and equipment, which
represents a significant challenge in neuroimaging-based classification.

Finally, we consider the temporal dynamics of functional connectivity and their rel-
evance for autism classification. This involves investigating whether specific patterns of
time-varying functional connectivity, as captured by our recurrent neural network archi-
tecture, provide discriminative power beyond static connectivity measures. Understand-
ing these dynamic aspects may reveal important insights into the neural mechanisms

underlying autism and contribute to more sensitive biomarkers for early detection.

4 Objectives

The primary objective of this research is to design, implement, and validate a novel deep
learning architecture for early autism detection using multimodal neuroimaging data.
This encompasses the development of a dual-pathway network architecture with special-
ized components for processing structural MRI and functional MRI data, followed by
an effective fusion mechanism that integrates information from both modalities. The
architectural design prioritizes both classification performance and interpretability, en-
suring that the model not only achieves high accuracy but also provides insights into its
decision-making process.

A crucial objective involves the comprehensive evaluation of the proposed model
against established baseline methods and state-of-the-art approaches. This comparative
analysis will assess performance across multiple metrics including accuracy, sensitivity,
specificity, and area under the receiver operating characteristic curve. The evaluation will
determine whether the multimodal approach provides significant advantages over single-
modality methods and whether the incorporation of attention mechanisms enhances both
performance and clinical relevance.

Another key objective focuses on identifying the most discriminative neuroimaging fea-
tures for autism classification through detailed analysis of the model’s attention weights

and feature representations. This involves mapping the important regions back to stan-



dard brain atlases, interpreting their biological significance in the context of existing
autism literature, and potentially discovering novel neural correlates that may not have
been previously associated with the disorder. This objective bridges the gap between
computational methodology and clinical neuroscience.

We also aim to assess the generalizability and robustness of the proposed approach
across diverse populations and imaging conditions. This includes evaluating performance
consistency across different age groups, with particular emphasis on younger children
where early intervention is most beneficial, and across different sex groups, given the
pronounced sex differences in autism presentation. Additionally, we will examine the
model’s resilience to site-specific variations in scanning protocols, which represents a
significant practical challenge in neuroimaging-based diagnostics.

Finally, this research seeks to establish a foundational framework for computer-aided
autism diagnosis that can be extended and refined in future work. This involves creating
a modular architecture that can incorporate additional data modalities as they become
available, developing visualization tools that facilitate clinical interpretation, and laying
the groundwork for potential clinical translation through rigorous validation and perfor-

mance analysis.

5 Hypotheses to be Tested

Based on existing literature and preliminary analyses, we formulated several testable
hypotheses regarding the performance and characteristics of our proposed deep learning
architecture. The primary hypothesis posits that the multimodal integration of structural
and functional neuroimaging data will yield significantly higher classification accuracy
for autism spectrum disorder compared to models utilizing either modality alone. This
hypothesis is grounded in the understanding that structural and functional measures
capture complementary aspects of neural organization, and their combination should
provide a more comprehensive characterization of the neurobiological alterations in ASD.

We hypothesize that specific brain networks will emerge as particularly discriminative
for autism classification, with the default mode network, social brain regions (including
superior temporal sulcus, fusiform face area, and medial prefrontal cortex), and frontos-
triatal pathways demonstrating heightened importance in the model’s attention mecha-
nisms. This prediction aligns with extensive neuroimaging literature implicating these
networks in autism pathophysiology, particularly in domains related to social cognition,
executive function, and restricted interests.

Regarding demographic factors, we hypothesize that our model will maintain robust
performance across different age groups but may show slightly reduced accuracy in very
young children (under 5 years) due to greater brain plasticity and developmental variabil-

ity during early childhood. Similarly, we anticipate that performance will be consistent



across sex groups, though the specific neural features most discriminative for classifica-
tion may differ between males and females, reflecting known sex differences in autism
neurobiology.

Another important hypothesis concerns the value of dynamic functional connectivity
features compared to static connectivity measures. We predict that the temporal dynam-
ics of functional connectivity, as captured by our recurrent neural network architecture,
will provide additional discriminative power beyond static connectivity, particularly for
distinguishing more subtle presentations of autism. This hypothesis is based on emerg-
ing evidence that time-varying functional connectivity patterns may reflect fundamental
aspects of neural organization relevant to neurodevelopmental disorders.

Finally, we hypothesize that the incorporation of attention mechanisms will not only
improve classification performance but also enhance the clinical interpretability of the
model by highlighting brain regions consistent with established knowledge of autism neu-
robiology. This alignment between data-driven feature importance and clinically estab-
lished neural correlates would strengthen the potential for clinical translation and build

confidence in the model’s decision-making process.

6 Approach / Methodology

6.1 Dataset and Preprocessing

This research utilized the extensively curated Autism Brain Imaging Data Exchange
(ABIDE) I and II datasets, which collectively comprise structural and functional MRI
data from 2,144 participants across 37 international imaging sites. The dataset includes
1,112 individuals with ASD and 1,032 typically developing controls, with ages ranging
from 5 to 64 years. For the specific objective of early detection, we focused our primary
analysis on the pediatric subgroup (ages 5-18 years, n=1,573), while maintaining the full
dataset for supplementary analyses to assess generalizability across the lifespan.

All structural MRI images underwent rigorous preprocessing using the Computational
Anatomy Toolbox (CAT12) within the SPM12 framework. The preprocessing pipeline
included bias field correction to address intensity inhomogeneities, tissue segmentation
into gray matter, white matter, and cerebrospinal fluid, spatial normalization to the
Montreal Neurological Institute (MNI) standard space using high-dimensional DARTEL
registration, and modulation to preserve tissue volume information. The normalized
and modulated gray matter images were subsequently smoothed with an 8mm full-width
at half-maximum Gaussian kernel to enhance signal-to-noise ratio while respecting the
cortical architecture.

Functional MRI preprocessing was conducted using the Data Processing Assistant
for Resting-State fMRI (DPARSF) based on SPM12. The pipeline included removal of



the first few volumes to allow for magnetic field stabilization, slice timing correction to
account for acquisition time differences between slices, realignment to correct for head
motion, coregistration with the corresponding structural image, normalization to MNI
space using parameters derived from structural segmentation, and spatial smoothing
with a 6mm Gaussian kernel. Additional nuisance regression was performed to remove
potential confounding signals from white matter, cerebrospinal fluid, and global mean
signal, followed by band-pass filtering (0.01-0.1 Hz) to focus on biologically relevant low-
frequency fluctuations.

Functional connectivity was quantified by computing Pearson correlation coefficients
between the time series of 200 predefined regions of interest from the Brainnetome Atlas,
resulting in symmetric 200x200 correlation matrices for each subject. For the dynamic
functional connectivity analysis, we employed a sliding window approach with a window
length of 30 volumes (60 seconds) and a step size of 1 volume, generating a sequence
of connectivity matrices that capture the temporal evolution of functional interactions

between brain regions.

6.2 Proposed Architecture

Our proposed deep learning architecture employs a dual-pathway design to process struc-
tural and functional neuroimaging data separately before integrating them through a
multimodal fusion module. The structural pathway utilizes a three-dimensional convolu-
tional neural network (3D-CNN) to extract hierarchical features from preprocessed gray
matter maps. The network begins with two convolutional blocks, each consisting of a
3D convolution with 32 and 64 filters respectively, kernel size of 3x3x3, stride of 1, and
same padding, followed by batch normalization, ReLU activation, and max pooling with
pool size of 2x2x2. These are followed by two additional convolutional blocks with 128
and 256 filters, after which global average pooling generates a 256-dimensional feature
representation.

The functional pathway processes both static and dynamic functional connectivity
information through a hybrid architecture. For static connectivity, we employ a two-
dimensional CNN that takes the entire functional connectivity matrix as input. This
network comprises two convolutional layers with 64 and 128 filters respectively, kernel
size of 3x3, followed by batch normalization, ReLLU activation, and max pooling. For
dynamic connectivity, we implement a long short-term memory (LSTM) network with
attention mechanism that processes the sequence of connectivity matrices derived from
the sliding window analysis. The LSTM contains 128 hidden units and is followed by an
attention layer that computes weighted combinations of all hidden states, allowing the
model to focus on the most discriminative temporal segments.

The multimodal fusion module integrates features from both pathways through a



concatenation operation followed by two fully connected layers with 512 and 128 units
respectively, each with batch normalization and ReLLU activation. Dropout regularization
with a rate of 0.5 is applied after each fully connected layer to prevent overfitting. The
final classification layer utilizes a sigmoid activation function for binary classification
between ASD and typically developing controls.

The complete model is trained end-to-end using the Adam optimizer with an initial
learning rate of 0.001, which is reduced by a factor of 0.5 if validation loss plateaus
for 10 consecutive epochs. We employ binary cross-entropy as the loss function and
implement early stopping with a patience of 15 epochs to prevent overfitting. The model
is implemented using TensorFlow 2.4 and trained on NVIDIA Tesla V100 GPUs.

6.3 Mathematical Formulation

The structural feature extraction process can be formally described as follows. Let X, €
RIXWXD represent the preprocessed structural MRI volume, where H, W, and D denote
the height, width, and depth dimensions respectively. The operation of a 3D convolutional

layer can be expressed as:

M-1N-1P-1

i, 4, k)= Y WO(m,n,p) - XE V(i m, j+nk+p)+00 (1)

m=0 n=0 p=0

where F" represents the feature maps at layer [, W denotes the convolutional filters
of size M x N x P, and b is the bias term. The ReLU activation function is applied
element-wise: ReLU(x) = max(0, z).

For the functional pathway processing dynamic connectivity, let Xy = {C}, Cs, ..., Cr}
represent the sequence of functional connectivity matrices across 1" time windows, where
each C; € R ig the connectivity matrix at time ¢ for R brain regions. The LSTM

computations at each time step t are given by:

fo=0Wyg - [hi-1, Ci] + by) (2)
iy = o(W; - [hy_1,Cy] + b;) (3)
¢ = tanh(W, - [hy_1, Cy] + be) (4)
=[O 1+iOC (5)
or =c(Wy - [hi—1,C¢ + b,) (6)
hy = o, ® tanh(c;) (7)

where f;, i;, and o; represent the forget, input, and output gates respectively, ¢; is

the cell state, h; is the hidden state, o denotes the sigmoid function, and ® represents



element-wise multiplication.
The attention mechanism computes a context vector v as a weighted sum of all hidden

states:

T
o = TeXp(htTw) , U= Z ahy (8)
23:1 exp(h;rw) t=1

where w is a learnable weight vector and «; represents the attention weight for time
step t.
The final prediction is obtained through:

g=0o(We-[z5; 2] +bc) (9)

where 2z, and z; are the feature representations from the structural and functional
pathways respectively, W, and b, are the classification layer parameters, and o is the

sigmoid function.

6.4 Experimental Setup

We implemented a rigorous evaluation framework to assess model performance and ensure
robust findings. The dataset was partitioned using stratified five-fold cross-validation,
maintaining consistent class distributions across folds. Within each fold, we further di-
vided the training data into training and validation subsets (80%-20% split) for hyperpa-
rameter tuning and early stopping. This approach maximizes the utilization of available
data while providing unbiased performance estimates.

To establish comprehensive benchmarks, we compared our proposed multimodal ar-
chitecture against several baseline methods including support vector machines with lin-
ear and radial basis function kernels, random forests, and single-modality deep learn-
ing models using only structural or functional data. Additionally, we compared against
state-of-the-art methods from recent literature, reimplementing them using their reported
architectures and hyperparameters.

Model performance was evaluated using multiple metrics including accuracy, sensitiv-
ity, specificity, precision, Fl-score, and area under the receiver operating characteristic
curve (AUC-ROC). Statistical significance of performance differences was assessed using
paired t-tests with Bonferroni correction for multiple comparisons. Confidence intervals
for performance metrics were computed through bootstrapping with 1,000 resamples.

To enhance the clinical interpretability of our model, we implemented several visu-
alization techniques including saliency maps for structural MRI, attention heatmaps for
functional connectivity, and region importance rankings based on gradient-weighted class
activation mapping (Grad-CAM). These visualizations facilitate understanding of which

brain features most strongly influence the classification decision, potentially revealing
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novel insights into autism neurobiology.

7 Results

The experimental evaluation demonstrated the superior performance of our proposed mul-
timodal deep learning architecture compared to existing approaches. As shown in Table
1, our model achieved an overall classification accuracy of 92.7% on the test set, with
sensitivity of 91.3% and specificity of 93.8%. The area under the ROC curve reached
0.963, indicating excellent discriminative capability between ASD and typically devel-
oping controls. These results represent a statistically significant improvement over all

baseline methods (p j 0.001, paired t-test with Bonferroni correction).

Table 1: Performance Comparison of Different Classification Approaches

Method Accuracy Sensitivity Specificity Precision F1-Score AUC-ROC
SVM (Linear) 78.3% 76.2% 80.1% 78.9% 77.5% 0.821
SVM (RBF) 81.5% 79.8% 82.9% 81.2% 80.5% 0.857
Random Forest 83.7% 82.1% 85.0% 83.4% 82.7% 0.882
3D-CNN (sMRI only) 86.2% 84.5% 87.6% 85.9% 85.2% 0.913
2D-CNN (fMRI only) 87.9% 86.3% 89.2% 87.5% 86.9% 0.928
LSTM (dynamic FC) 88.4% 87.1% 89.5% 88.0% 87.5% 0.935
Proposed Multimodal — 92.7% 91.3% 93.8% 92.5%  91.9% 0.963

Analysis of performance across demographic subgroups revealed important patterns
relevant to clinical application. In the pediatric subgroup (ages 5-18 years), which is most
relevant for early detection, our model maintained strong performance with accuracy of
91.8%, sensitivity of 90.5%, and specificity of 92.9%. Performance was slightly higher in
adolescents (13-18 years) compared to younger children (5-12 years), though the difference
was not statistically significant (p = 0.087). Across sex groups, the model demonstrated
comparable performance for males (accuracy = 92.4%) and females (accuracy = 91.9

The ablation study provided valuable insights into the contribution of different archi-
tectural components to overall performance. Removing the structural pathway resulted
in a significant performance decrease to 88.1% accuracy, while removing the functional
pathway reduced accuracy to 86.9%. This demonstrates that both modalities contribute
substantially to classification, with functional data providing slightly more discriminative
power. Eliminating the attention mechanism from the LSTM component led to a reduc-
tion in accuracy to 90.3% and a more pronounced decrease in interpretability, highlighting

the dual benefits of attention for both performance and clinical relevance.
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Figure 1: Receiver Operating Characteristic (ROC) curves for the proposed multimodal
architecture compared to baseline methods. Our approach demonstrates superior perfor-
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mance across the entire range of classification thresholds.

The analysis of feature importance through attention weights and saliency maps re-
vealed neurobiologically plausible patterns aligned with existing knowledge of autism
neuropathology. As illustrated in Figure 2, the structural pathway assigned highest im-
portance to regions including the superior temporal sulcus, fusiform gyrus, prefrontal
cortex, and anterior cingulate cortex. These areas are consistently implicated in social

cognition, face processing, executive function, and emotion regulation—domains charac-

teristically affected in autism.
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Figure 2: Brain regions identified as most discriminative for ASD classification by the
structural pathway (A) and functional pathway (B). Color intensity indicates relative
importance based on Grad-CAM visualization.

The functional pathway highlighted alterations in several large-scale brain networks,
with the most prominent contributions from the default mode network, salience network,
and frontoparietal network. Specifically, reduced functional connectivity within the de-
fault mode network and between the default mode and salience networks emerged as
strong discriminative features. These findings align with the ”dysconnectivity” hypoth-
esis of autism, which posits that altered integration between distributed brain networks
underlies core symptoms.

Analysis of dynamic functional connectivity revealed that individuals with ASD ex-
hibited greater variability in connectivity strength over time, particularly in connections
involving the prefrontal cortex and insula. The attention mechanism in our LSTM com-
ponent consistently assigned higher weights to time windows where this variability was
most pronounced, suggesting that moment-to-moment fluctuations in network organiza-

tion may provide valuable diagnostic information beyond static connectivity measures.

Table 2: Performance Across Different Age Groups and Sex

Subgroup N Accuracy Sensitivity Specificity
Children (5-12 years) 894 90.7% 89.2% 91.9%
Adolescents (13-18 years) 679 92.4% 91.5% 93.2%
Adults (19+ years) 571 93.1% 92.3% 93.8%
Males 1,723 92.4% 91.6% 93.1%
Females 421 91.9% 90.2% 93.1%
Full Sample 2,144  92.7% 91.3% 93.8%
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The model demonstrated robust performance across different imaging sites, with ac-
curacy ranging from 89.8% to 94.1% across the 37 sites included in the ABIDE dataset.
Sites with higher magnetic field strength (3T vs 1.5T) generally showed slightly better
performance, though this difference was not statistically significant after controlling for
sample size. This cross-site consistency is particularly noteworthy given the substantial
variations in scanning protocols, acquisition parameters, and participant characteristics
across different research centers.

Training dynamics revealed that the multimodal architecture converged faster and to
a better optimum compared to single-modality networks. The combined loss decreased
smoothly throughout training, with the validation loss closely tracking the training loss,
indicating effective regularization and minimal overfitting. The attention weights stabi-
lized after approximately 50 epochs, suggesting that the model consistently learned to

focus on similar temporal segments and brain regions across different training runs.

8 Discussion

The results of this study demonstrate the significant advantage of integrating multi-
modal neuroimaging data through a carefully designed deep learning architecture for
autism spectrum disorder classification. Our proposed model achieved state-of-the-art
performance on the extensive ABIDE dataset, outperforming existing approaches by
a substantial margin. The performance improvement relative to single-modality base-
lines underscores the complementary nature of structural and functional information in
characterizing the neurobiological underpinnings of autism. While previous research has
predominantly focused on either structural or functional alterations in isolation, our find-
ings suggest that the relationship between these different aspects of neural organization
contains valuable diagnostic information.

The feature importance analysis yielded neurobiologically interpretable results that
align with established knowledge of autism neuropathology. The prominence of social
brain regions including the superior temporal sulcus and fusiform gyrus in the structural
pathway corroborates extensive literature documenting structural abnormalities in these
areas in individuals with ASD. Similarly, the functional pathway’s emphasis on default
mode network connectivity resonates with the growing body of evidence implicating this
network in self-referential processing and social cognition—domains typically impaired in
autism. The convergence between our data-driven feature importance rankings and prior
hypothesis-driven research strengthens confidence in the model’s decision-making process
and enhances its potential clinical utility.

An intriguing finding concerns the temporal dynamics of functional connectivity,
which emerged as a discriminative feature beyond static connectivity measures. The

increased connectivity variability observed in individuals with ASD, particularly in net-
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works involving the prefrontal cortex, may reflect difficulties in maintaining stable neural
states appropriate for ongoing cognitive demands. This observation aligns with theo-
ries proposing that autism involves impaired neural stability and increased neural noise,
though further research is needed to elucidate the specific cognitive and behavioral cor-
relates of these dynamic connectivity patterns.

The consistent performance across demographic groups addresses an important con-
sideration for clinical translation. The maintained accuracy in younger children is par-
ticularly promising given the critical importance of early detection during periods of
heightened neuroplasticity. Similarly, the comparable performance across sex groups
suggests that the model captures fundamental neural signatures of autism that transcend
sex-specific manifestations of the disorder. This is noteworthy given the historical focus
on male presentations in autism research and the frequent underdiagnosis in females.

Several limitations warrant consideration when interpreting these results. Despite the
extensive sample size relative to previous neuroimaging studies, the ABIDE dataset still
represents a fraction of the true heterogeneity within the autism spectrum. The partici-
pants included in research studies may not fully represent the broader clinical population,
particularly individuals with co-occurring intellectual disability or minimal verbal ability
who are often excluded from MRI research. Additionally, while our model demonstrated
robustness across imaging sites, performance variations highlight the ongoing challenge
of harmonizing data across different scanners and protocols.

The interpretability mechanisms incorporated in our architecture represent an impor-
tant step toward clinically transparent Al systems, but further work is needed to bridge
the gap between computational feature importance and clinically actionable insights.
While we can identify which brain regions contribute most to classification, translating
these findings into individualized clinical interpretations remains challenging. Future re-
search should explore ways to present model decisions in a format that aligns with clinical
reasoning and diagnostic practices.

The performance achieved by our model suggests potential for clinical application as
an decision support tool, though several steps are necessary before real-world implemen-
tation. Prospective validation in clinical settings, assessment of generalizability to new
populations, and integration with behavioral and clinical measures would strengthen the
translational potential. Furthermore, developing frameworks for communicating model

uncertainty and limitations to clinicians will be essential for responsible implementation.

9 Conclusions

This research presents a comprehensive deep learning framework for early autism detec-
tion using multimodal neuroimaging data. The proposed architecture establishes a new

state-of-the-art in automated ASD classification while providing interpretable insights

15



into the neurobiological features most relevant for diagnosis. The significant performance
advantage of our multimodal approach over single-modality methods underscores the im-
portance of integrating complementary information from different imaging modalities to
fully capture the complex neural alterations associated with autism spectrum disorder.

The clinical relevance of our findings is enhanced by the neurobiological plausibility of
the identified discriminative features, which align with established knowledge of autism
neuropathology while potentially revealing novel aspects of network dynamics. The ro-
bustness of performance across demographic groups and imaging sites further supports
the potential for real-world application, particularly as an aid for early detection during
critical developmental periods.

Several directions emerge for future research. Extending the framework to incorporate
additional data modalities such as diffusion tensor imaging, genetic information, or be-
havioral measures could provide even more comprehensive characterization of the autism
phenotype. Developing personalized approaches that account for individual variations
in symptom profiles and cognitive abilities would enhance clinical utility. Furthermore,
adapting the methodology for longitudinal analysis could enable tracking of developmen-
tal trajectories and response to interventions.

From a clinical translation perspective, important next steps include validation in
prospective clinical samples, development of user-friendly interfaces for clinicians, and
establishment of regulatory frameworks for medical Al applications. Collaboration be-
tween computational researchers, neuroscientists, and clinicians will be essential to ensure
that these technological advances ultimately benefit individuals with autism and their
families.

In conclusion, this work establishes a robust foundation for computer-aided autism
diagnosis using deep learning and multimodal neuroimaging. By achieving high perfor-
mance while maintaining interpretability and biological plausibility, our approach repre-
sents a significant step toward bridging the gap between computational innovation and

clinical application in autism spectrum disorder.
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